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FOREWORD

Compiled in this volume are twelve papers from agencies working with the
Guidance Laboratory of NASA-ERC. These papers concern special studies in the
disciplines of guidance theory, trajectory analysis, and celestial mechanics. They

include:

1.

10.

A presentation of a method for classifying and analyzing guidance
modes, together with a survey and classification of existing modes;

A development of a minimum fuel guidance solution for certain
hyperbola-circle transfers;

A presentation of generalized necessary conditions for a minimizing
control function;

A demonstration of how many non-standard problems in control
theory can be transformed to "ordinary differential form" and
treated in a standard way;

A study of impulsive transfer optimization, presenting a computational
scheme for determining optimum n-impulse trajectories;

A demonstration of the utility of a group theoretical principle in
solving non-homogeneous linear systems of differential equations
and an application to the perturbation of elliptic motion;

A derivation of a useful form of the Sundman inequality;

A study of a formal approximate decoupling of the n-body problem
into a k-body problem (k < n) and an (n - k + 1) - body problem;

A presentation of theory for the solution of the perturbation problem
for a system of non-linear differential equations under general
linear two-point boundary conditions;

A presentation of an algorithm for automatic computation of

derivatives of a composite function and its application to a power
series solution of a celestial mechanics problem;

iii



11. A presentation of results on the long-term behavior of close lunar
orbiters;

12. An analytical study of the three-dimensional stability of motion of a
particle near L4 in a non-linear Earth-moon gravitational field.

The first paper provides a framework enabling many specific studies to
result in an accumulating body of guidance mode information, useful to both the
guidance theorist in research work, and the guidance software engineer in planning
and development work.

The second paper provides one guidance solution of interest to the guidance
theorist, and could form the basis for a guidance mode to be studied from the
viewpoint of the first paper.

Tke third paper provides the trajectory analyst with tools for attacking a
broader class of optimization problems, and the fourth paper points out a way he
may profitably apply a large body of results to his problems which are not of the
vordinary differential” type.

The fifth paper aids in the search for optimum impulsive orbit transfers,
and the sixth through the ninth papers contribute celestial mechanics theory useful
toward the solution of problems occurring in mission design, orbit determination or
orbit prediction.

The tenth paper supports both automatic symbolic processing efforts and
computational requirements in trajectory analysis and celestial mechanics.

The last two papers aid the trajectory analyst or mission designer interested
in stable orbits near the moon or its equilateral libration points.




SUMMARY

This volume contains technical papers on NASA-
sponsored studies in the areas of trajectory analysis
and guidance theory. These papers cover the period
beginning 1 October 1966 and ending 1 October 1967,
The technical supervision of this work is under the

personnel of the Guidance Laboratory at NASA-ERC.
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INTRODUCTION

This document contains twelve technical papers covering work sponsored by
the Guidance Laboratory of the NASA Electronics Research Center (ERC). The
papers are concerned with guidance theory, trajectory analysis, and celestial
mechanics,

The following table presents the contributing institutions and the discipline of
the paper.

Institution/ Author Discipline

Company
TRW C.G. Pfeiffer Guidance Theory
AMA T.N. Edelbaum Guidance Theory
Northeastern Univ.| J. Warga Trajectory Analysis*
Princeton Univ, P.M. Lion Trajectory Analysis
CRA D. Lewis/P. Mendelson*’.r Celestial Mechanics
IBM P.Sconzo/D, Valenzuela Celestial Mechanics
Stanford Univ. J. Vagners/H.B. Schechter| Celestial Mechanics

¥ Two papers

** Four papers

Synopses of the individual papers are presented below:

Paper No. 1

The first paper by C.G. Pfeiffer of TRW surveys the guidance modes
presently in use or in development, with the objective of appraising their usefullness
when applied to a unified guidance concept. Unified guidance refers to the application
of one hardware system as well as one overall computational scheme for guidance
in all phases of a mission.



INTRODUC TION

The breadth of the study called for, and the importance of the consequences
drawn from it, made it advisable to review critically concepts and terms in use in
space guidance and to update definitions where necessary. Thus this paper starts
with defining terms such as guidance, guidance mode, unified guidance and others.
The paper also elaborates on the relationship of guidance to navigation.

Chapter II then gives a rather comprehensive survey of presently known
guidance modes (USA-developed) and categorizes them according to various principles
of division.

For the evaluation of guidance modes in general, as well as with respect to
the applicability to unified guidance, measures of performance are suggested in the
following chapter. These concern such criteria as optimality, accuracy, applicability,
flexibility, and others.

The paper does not aim at evaluating all the listed modes, but rather tries to
lay the groundwork for such an attempt.

Paper No. 2

The second paper, a technical progress report from Analytical Mechanics
Associates, Inc., by T.N. Edelbaum, presents a minimum fuel guidance procedure.
It presents a first-order impulsive correction procedure for mid-course guidance,
along with a procedure for establishing approximate equations of motion which are
then integrated. This guidance procedure is classified in the paper by C. Pfeiffer
(No. 1 in this document).

Paper No, 3

The third paper, written by Jack Warga of Northeastern University, adds
directly to the results presented by him in the first compilation in this series.* In
the referenced paper, Prof. Warga presented existence and approximation theorems
for minimizing controls applicable to a general class of optimization problems. The
present paper contains a statement and proof of some corresponding conditions that
are necessary for the solutions to be minimizing.

* NASA, First Compilation of Papers on Trajectory Analysis and Guidance Theory,
NASA Scientific and Technical Information Division, Wash., D.C., 1967.
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Paper No. 4

In the fourth paper, Prof. Warga has presented some observations that
appear to have been overlooked by some workers in mathematical control theory
faced with problems that are not of the "ordinary differential” type. He illustrates
with three specific examples of how one may transform the problem to one which is
immediately treatable with classical results of control theory.

Paper No. §

The fifth technical paper is concerned with trajectory analysis., Written by
P.M. Lion of Princeton University, it presents a study of impulsive trajectory
calculations. It is based on Lawden's primer vector and presents necessary
conditions for a trajectory to be optimum. This primer vector has significance
for non-optimal trajectories. When these ideas are combined, a computational
scheme for determining optimum n-impulse trajectories is suggested.

The remaining papers are on various aspects of celestial mechanics.

Paper No. 6

The sixth technical paper, written by D.C. Lewis and Pinchas Mendelson,
formerly of Control Research Associates and now of Zetesis Corp., exploits a
principle which considers a system of differential equations invariant under continuous
and differentiable group transformation, It shows that it is possible to write down
a number of linearly independent solutions of the variational equations equal to the
number of independent parameters of the group. This exploitation is used to present
several solutions to the Keplerian case.

Paper No. 7

The seventh technical paper, written by D.C. Lewis, and entitled, "Comments
on the Sundman Inequality, " presents some preliminary theorems in vector analysis
and applies them in developing the Sundman inequality in the form used in former
papers.
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Paper No, 8

The eighth paper, also written by D.C. Lewis, discusses partial and complete
decoupling of a n-body problem into a k-body problem (k < n) by use of developed
parameters of the problem. Theory is presented to develop the so-called quasi-
first integrals of the partially decoupled system from the first integrals of the
unreduced system.

Paper No. 9

The ninth paper, also written by D.C. Lewis, discusses the perturbation
problem for a system of non-linear differential equations. The problem is reduced
to solving k "bifurcation' equations where k is the degeneracy of the problem.
A Green's matrix for linear systems with boundary conditions of arbitrary degeneracy
is constructed.

Paper No. 10

The tenth paper, written by P. Sconzo and D. Valenzuela of IBM, presents
work done on automatically computing the derivatives of a function by the recursive
Schlomilch-Cesaro formulation, The general cxpression obtained was used to
construct the power series expansions in the time variable of those powers of the
radius vector which appears most frequently in celestial mechanics.

Paper No. 11

The eleventh paper, written by J. Vagners of the University of Washington
(Stanford University), presents results on the long-term behavior of close lunar
orbiters. A Hamiltonian is presented with the short and medium terms removed.
The long-period motion is thus analyzed and results presented,

Paper No. 12

The last paper in this report was written by Hans B, Schechter of Stanford
University. This paper presents an analytic study of the three-dimensional stability
of motion of a particle near L, in a non-linear Earth-moon force field. A linear
solar gravitational field distribution is superimposed on the Earth-moon field, The
long-period features of the motion of the particle are studied.




INTRODUCTION

Two internal publications authored or co-authored by members of the
sponsoring laboratory and in the subject technical fields have appeared since the
last compilation. These are listed below with their abstracts.

Miner, W.E., and J.F. Andrus: Necessary Conditions for Optimal
Lunar Trajectories with Discontinuous State Variables and Inter-
mediate Point Constraints. NASA TM X-1353, April 1967.

ABSTRACT

The guidance regime for an optimal multi-stage lunar trajectory is derived
by applying the mathematics of the calculus of variations as established by Denbow
for the generalized problem of Bolza. The steering angle programs for four
constant thrust level phases and the times to initiate and terminate the two coast
phases are determined in order to place maximum payload intc a specified lunar
orbit. The problem considered here is to determine an optimal trajectory
consisting of six sub-arcs utilizing three vehicle stages on which maximum payload
is transported from an exo-atmospheric point near the Earth to a specified lunar
orbit, The intermediate point constraints include two points at which stages are
separated and mass discontinuities occur, an Earth parking orbit of specified
energy and angular momentum magnitude, and four thrust magnitude levels. The
Euler-Lagrange equations determine the optimal steering for the thrusting phases
and the Denbow transversality equations are used to calculate the discontinuities at
the ends of the sub-arcs, This method is applied here and the equations necessary
to solve this problem using a high-speed computer are derived.

Hoelker, R.F,: Numerical Studies of Transitions between the Restricted
Problem of Three Bodies and the Problem of Two Fixed Centers and
the Kepler Problem. NASA TM X-1465, November, 1967.

ABSTRACT

For the comparison of the trajectories of the two fixed-center problem with
those of the restricted problem of three bodies, fields of trajectories are numerically
computed for six initial position conditions, all starting on the line of masses and
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perpendicularly to this line. The transition is studied by varying stepwise, for these
fields, the rate of revolution of the primaries from zero to the equilibrium rate of
circular motion,

For the investigation of the behavior of trajectories in the transition from the
Kepler problem to the restricted problem, the Kepler orbits are considered in a
coordinate system rotating at the rate determined by the continuation of this system
into that of the restricted problem. Transition characteristics are shown on samples
of periodic orbits and of trajectory fields. In particular, the continuous transition of
a family of Kepler orbits into periodic orbits about the smaller primary as well as
about the L3—1ibration point is demonstrated.
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GUIDANCE MODES

An Analysis of Guidance Modes1

C. G. Pfeiffer2

1. Introduction

Guidance theory is concerned with the solution of a two-point boundar,
value problem, which arises when one attempts to control3 the translation
motion of a space vehicle so as to attain desired end conditions at mission
completion. That is, given the initial conditions, such as the inertial
position and velocity of the launch site, and the desired end conditions,
such as the orbital elements of the final satellite orbit about the moon
or planet, and a description of the characteristics of the rocket engines
and/or aerodynamic lift/drag maneuvers which supply the controlling
accelerations during the mission, the guidance analyst must design an
algorithm for calculating the translational accelerations to be applied as
the vehicle moves toward the final time. Then:

Definition 1: Given a mathematical model of the motion of a space
vehicle, a description of the translation acceleration which can be
commanded by the guidance system, and an estimate of the state of the
overall dynamic system, guidance is the task of calculating and executing
a realizable acceleration profile which will cause the trajectory of the
space vehicle to attain desired end conditions, where

Definition 2: The state of the space vehicle system consists of the
position and velocity of the vehicle, the parameters determining the
vehicle performance capability, and the parameters determining the
gravitational and atmospheric accelerations.

The estimate of the state is obtained from the navigation system, where

Definition 3: Navigation is the task of estimating the state of the
space vehicle system from sensed data, such as the first and second integrals
of on-board accelerometer data, and/or earth-based tracking data, and/or
on-board observation of a celestial reference.

Definition #1 states that guidance encompasses guidance theory as
well as the mechanization of the theory. Guidance mechanization usually
concerns the guidance theoretician only to the extent that it affects his
analytical treatment of the problem. For example, he usually assumes that
the attitude control problem can be ignored, where

1Acknowledgement: This paper was written under NASA contract NAS 12-593,
administered by Electronics Research Center, Cambridge, Massachusetts.

The classifications of guidance modes and measures of performance were
suggested by Mr. W. E. Miner and Mr. D. H. Schmieder of the Guidance Theory
and Trajectory Analysis Branch of ERC.

2Head, Mathematical Physics Section, Guidance and Analysis Department,
TRW Systems, Redondo Beach, California.

3guidance theory is a special case of final value control theory.
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Definition 4: Attitude Control is the task of attaining and stab-
ilizing the vehicle in the attitude configuration called for by the
guidance system.

This approach is reasonable for most applications, because the guidance

and attitude control response times are usually so different that there is
negligible interaction.* On the other hand, the analytical treatment will
certainly be dependent upon the functional form of the guidance accelerations,
which might be applied in the form of impulsive changes of velocity, realized
by thrusting with a relatively high acceleration level for a relatively

short time; by starting, throttling, steering and/or shutting off a rocket
engine which thrusts for a relatively long period of time, and/or by applying
11ft and/or drag accelerations during motion in the atmosphere, realized

by commanding motion of aerodynamic surfaces. With these considerations in
mind, the analyst seeks to design a guidance "mode", where

Definition 5: A guidance mode is a policy for calculating the para-
meters and functions which will accomplish the guidance task.

Since navigation information will be gathered during the mission in order to
update the estimate of the state of the system, a guidance mode must be
capable of acting as a real-time feedback final-value control law.

In general, there exists an infinite variety of guldance modes which
will accomplish mission objectives. Thus one seeks an optimal guidance
policy which satisfies the end conditions while minimizing some performance
index, such as engine propellant expenditure, or else one pre-specifies a
functional form which is near-optimal. Present practice is to simplify
the overall optimization problem by treating it as a sequence of two-point
boundary value problems. That is, the overall mission is thought of as a
sequence of ''phases', usually characterized by the means available for
applying the guidance accelerations. The objective of the guidance system
for any given phase is to attain an intermediate set of pre-specified end
conditions. For example, a guldance phase might consist of transfer by
means of relatively high rocket thrust acceleration from a near-earth
circular parking orbit to a specified earth-escape hyperbola. (A more
detailed description of guldance phases is given in Appendices A and B).
Such intermediate end conditions must be obtained by a 'targeting' method
(discussed in Appendix C). The imposition of these constraints on the
overall trajectory leads to a sub-optimal overall guidance law, but, since
each phase can be treated individually, the design of appropriate guidance
modes is much simplified. In practice, guidance modes for the individual
phases are usually quite different in form. Considering also the diverse
forms of guidance mechanization employed for the various phases, it 1s true

*Note that stability is not an important consideration in the guidance
problem, for the duration of guildance is finite and short compared to the
response time of the dynamic system defined by the translational equations
of motion. This is not true for the attitude control problem, indeed,
stability is usually the primary design goal.

10




GUIDANCE MODES

that essentially different guidance systems are presently used on a given
mission.

It seems clear that it would be desirable to design a unified
guidance system for future applications, where

Definition 6: A unified guidance system is one capable of guiding
all phases of a given mission.

Toward that end, it is the objective of this paper to provide a cursory
survey of the present state of guidance theory (see also References 1-4),
to describe and classify existing guidance modes, and to define some quali-
tative measures of their relative performance. The purpose of such a study
is to aid in the rational selection and/or development of guidance modes
for future missions, to facilitate the synthesis of the chosen modes into

a unified guidance concept, and to point out problem areas where further
development is required.

2. The Separation of Guidance and Navigation

Implicit in the definitions of guidance and navigation is the assump-
tion that these two problems can be treated separately. That is, in present
practice the guidance theorist designs a guidance mode by assuming that
the state is known perfectly, and for real-time applications employs the
estimatedstate in place of its true value. This assumption, which is
essential to a meaningful discussion of existing guidance modes, requires
further clarification.

Strictly speaking, the deterministic derivation of a guidance mode
is not correct, for the predicted end conditions which determine the guid-
ance functions become random variables if there are random estimation
errors and random systematic disturbances to the trajectory. In effect,
the state of the system can no longer be defined simply by position, velocity,
and system parameter vectors. Instead, the state must be thought of as the
expected value of these quantities plus all the statistical moments of their
distribution. In other words, the state can only be described by the condit-
ional probability density function of the state, given the navigation data.
From the point of view of guidance optimization theory, the random behavior
of the dynamic system implies that there no longer exists a field of
solutions which are the characteristics of the deterministic Hamilton-Jacobi
partial differential equation. Thus, conceptually at least, the notion of
a predictable reference trajectory has to be abandoned.

Simple examples of stochastic control problems (see Appendix D) would
seem to indicate that the deterministic guidance analysis is nmot at all
valid for realistic problems. As a practical matter, however, stochastic
guidance analysis is not required for those applications where (1) an
apriori reference trajectory is available, and (2) the random navigation
errors and random systematic errors are small. That is, the deterministic
analysis applies when the first variation (or perhaps the first and second
variations) about some reference trajectory is the dominant consideration.
In a first variation analysis the random errors enter linearly and the
deterministic approach can be theoretically justified (see work by Joseph,
Lou, and Gunkel). Consideration of the second variation (or second and
third variations) does not change this conclusion. It then follows that

11
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results similar to the deterministic case are obtained but with additional
terms which can be interpreted as non-linear corrections or biases which
can be calculated. Such assumptions can be thought of as devices to sim-
plify the difficult computational problem of computing expectations.

The assumptions required to justify deterministic guidance analysis
usually apply to those phases of a space mission where continuous guidance
accelerations are applied, but stochastic considerations become important
when the guidance is applied in the form of a sequence of small velocity
impulses at unspecified times. The difficulty in this case is finding the
times of application. Present practice for the Ranger-Mariner-Surveyor
type of mission (Reference 5) is to pre-specify these times by heuristic
or empirical rules, and to calculate the real time corrections with a
linearized deterministic rule. The non-linear effects of the corrections
are treated by an iterative technique. Stochastic considerations are intro-
duced by employing a non-linear maximum likelihood estimator in the naviga-
tion equations, and appropriately modifying the targeted end conditions so
as to take into account the statistics of the estimation and systematic
errors. Small real time (adaptive) variations in the time of application
of the corrections are sometimes allowed. This approach demonstrably works
well for many applicationms.

One concludes, then, that the separate treatment of the guidance and
navigation problems can indeed be justified for most present day space
missions, and that deterministic guidance analysis is valid, if appropriate
approximations are made and if appropriate constraints are placed upon the
guidance policy.

3. Description and Classification of Typical Guidance Modes

The primary purpose of this paper is to classify typical guildance
modes, and to define qualitative measures of their performance (see Intro-
duction). In this part, various guidance modes will be classified according
to the mathematical approximations and/or assumptions introduced in their
derivation (Table 1). Although many of the methods discussed have never
been used in real time applications, they must be considered as possible
modes for future missions.

Class 1: Precise Model of Dynamic System - The guidance mode is based
upon a mathematical model representing all known accelerations on the vehicle
which are numerically significant.

Class 1.1: Expansion of Solutions - The Class 1 guidance mode gene-
rates the control as an explicit function of the state for all states in
some region of applicability.

Class 1.1.1: Linear Expansion - The control is a linear function of
the state. Examples are:
a) delta guidance - guide to null deviations (§)
from a standard trajectory
b) lamda matrix guidance (Reference 6)
¢) second variation guidance (References 7,8)
d) impluse velocity-to-be-gairad (References 3,5)
e) steering to velocity-to-be-gained (Reference 3)

12
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Class 1.1.2: Non-Linear Expansion ~ The control is a non-linear
function of the state. Examples are:
a) dynamic programming (Reference 9)
b) solution of Hamilton-Jacobi partial differential
equation
c) series expansion of equations of motion
d) series expansion of solutions (Reference 10)
e) series expansion of Hamiltonian (Reference 11)

Class 1.2: Successive Approximations - The class 1 guidance mode
generates the control function by successively applying in real time an
algorithm which converges after some number of iterations to the optimal
control.

Class 1.2.1: Direct Methods - A suitable approximate ordinary
extremum problem is defined in which only a finite number (N) of parameters
is to be determined, and then the class 1.2 guidance mode generates the
control by passing to the limit as N + » in the solution of the approximate
problem. Essentially, a minimizing sequence of control functions is con-
structed, and the desired solution is obtained by a limiting process based
upon this sequence (Reference 12, pp 174-175). Some approaches which might
be used are:

a) steepest descent (References 13,14)
b) Rayleigh-Ritz method (Reference 12, pp 175-176)
c) method of finite differences (Reference 12,

pp 176-177)

Class 1.2.2: TIndirect Methods - The class 1.2 guidance mode succes-
sively approximates in real time the control which satisfies optimality
conditions and the desired end conditions. Examples are:

a) optimal impulsive velocity-to~be-gained (Ref-
erence 5)

b) second variation control (References 7,8)

c) sweep method (Reference 15)

d) quasilinearization (Reference 16)

e) quasi-second order approximations (Reference 17)

Class 2: Approximate Model of System Dynamics - The guidance mode
is based upon an approximate mathematical model of the vehicle dynamics
and/or the gravitational and atmospheric acceleration. Essentially, approx-
imations are introduced into the physical model in order to simplify the
mathematical solution of the equations of motion.

Class 2.1: Closed Form ~ The Class 2 guidance mode yields a closed
form solution for the control in terms of the given initial conditions and
the desired end conditions.

Class 2.1.1: Approximation of Environmental Accelerations - The
derivation of the class 2.1 guidance mode follows from approximating the
first and second integrals of the gravitational, drag, and/or lift acceler-
ations between the initial and final times as relatively simple functions of
initial and end conditions. Examples are:

a) iterative guidance mode (Reference 18)
b) MIT explicit guidance (Reference 19)

13
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c¢) TRW explicit guidance (Reference 20)

d) Lewis Research Center explicit guidance (Reference 21)
e) Aerospace explicit guidance (Reference 22)

f) Robbins explicit guidance (Reference 23)

Class 2.1.2: Conic Model - The derivation to the class 2.1
guidance mode is based upon the assumption that the orbit desired at thrust
termination is a conic, and that thrust acts for a relatively short
duration of time. Examples are:

a) impulsive velocity-to-be gained (Reference 3)
b) steering to velocity-to-be gained (Reference 3)

Class 2.2: Successive Approximation of Cloged Form Guidance - The
Class 2 guidance mode employs algorithms similar to those of Class 2.1,
but the errors due to these approximations are iteratively reduced in real
time.

Class 2.2.1: Successive Approximation of Environmental Accelerations -
The approximated values of the acceleration integrals are successively
improved in real time by evaluating the integrals on the current real-time
predicted trajectory. No examples of this technique are known to the
author.

Class 2.2.2: Successive Approximation of Conic Model - The effects
of neglected terms in the conic model are calculated in real time as time
varying perturbations acting on the current approximate trajectory, and
these effects are introduced into the guidance equations. This approach
is similar to general perturbation techniques well-known in celestial
mechanics, but no applications to the real-time guidance problem are known
to the author.

4. Measures of Performance

The class of closed form guidance modes has recently received much
attention, because one obtains a versatile control law which can treat
large perturbations and yet requires relatively little preflight calculation.
This approach has limited application, however, because the simplifying
approximations required for the derivation cannot be justified in general.
For example, at any iteration of the guidance calculation it may be assumed
that the gravitational acceleration for the remainder of the flight can
be approximated by a constant vector. Such an approximation obviously
works well when applied to short powered flight arcs, but for long arcs
it can lead to serious degradation of performance. Some one of the Class
1 modes could be used to eliminate such difficulties, but then extensive
preflight calculation and storage might be necessary, or,if a linear
guidance law is employed, the performance could be poor in the presence
of large perturbations. Thus the choice of a guidance mode is often
ad hoc, and one must consider many factors. Some measures of performance
are:

1. optimality - given that there is a performance index to be
minimized, say propellant expenditure, how does the obtained
value of the performance index compare to the theoretical
minimum?

14
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2. accuracy - given that approximations are introduced into the
derivation and mechanization of the guidance equations, what
are the resulting errors in the desired terminal conditions?
These errors can be classified according to:

2.1 approximation errors - due to analytic approximations
introduced into the derivation of the guidance equations.

2.2 computer errors - due to the inaccuracies of the numerical
algorithms used to implement the guidance equations
(truncation and roundoff).

2.3 mechanization errors - due to the inability of the vehicle
to physically respond to the guidance commands.

There are also navigation errors, but, insofar as the guidance and
navigation problems are separable (i.e., assuming superposition

of effects), these errors need not be considered in the design

of a guidance mode.

3. region of applicability - what is the range of perturbations
which can be adequately treated by the guidance mode?

4. computer factors - what are the real time on-board and/or
earth-based computer requirements, in particular, how much storage
space is required, what is the length of the computing cycle for
each iteration of the guidance equations, and how complex must
the computer be?

5. preflight preparation - what is the cost in time and money of
preflight preparation of the guidance equations, in particular,
how long does it take to prepare the guidance system to
accomplish a given mission? (the "quick reaction" problem).

6. flexibility - what are the types of missions which the
guldance mode can perform, and how well can it adapt to changes
in the mission, such as variations of launch azimuth? (another
aspect of the "quick reaction" problem).

7. growth potential - what is potential applicability of the
guidance mode to future missions?

5. Conclusions

It is hoped that the classification method and defintiions of
measures of performance developed here will be of use in the synthesis
of modes (or mode) for a unified guidance system for advanced space
missions. Such a system should encorporate the best features of the various
modes, and improve upon their limitations. Although existing technology has
been adequate for present day missions, some challenging unsolved problems
remain in the area of optimal stochastic guidance, especially for the case
of impulsively applied guidance corrections (see Part 2). Some interesting
results have been obtained (References 24 - 28) but more research is needed.
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Appendix A: Description of Guidance Phases

Present practice in guidance system design is to segment the overall
trajectory into a sequence of thrusting and coast periods which can be
thought of as "phases", where

Definition 7: A guidance phase is a segment of a trajectory, usually
characterized by the means available for applying the guidance accelera-
tions, having a distinct guidance objective, i.e., specified end
conditions.

The guidance mode in each phase attempts to null errors resulting freca

the previous phase, plus errors due to any current disturbances, by
attaining the end conditions specified for the phase. Thus a guidance
system might be called upon to solve in real time many different types

of two-point boundary value problems for a wide range of initial conditionms.
Possible types of guidance phases for advanced missions are:

) High Thrust Continuous Guidance

Launch vehicle guidance

a. Initial ascent to altitude
b. Booster stage
c. Ascent to orbit

d. Transfer from parking orbit

Terminal guidance

a Retro into lunar or planetary orbit
b. Injection into earth satellite orbit
c. Descent from orbit

d. Soft landing and hovering

° Low Thrust Continuous Guidance

Spiral escape from earth
Earth to target transfer

a. Lunar

b. Interplanetary

Spiral capture by target body
Continuous orbit adjustment
a. Earth satellite

b. Lunar satellite

c. Planetary satellite

d. Earth-target transfer orbit
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] Impulsive Guidance

a. Midcourse

b. Approach

c. Terminal

d. Satellite orbit trim
e. Descent from orbit

f. Soft landing retro

e Aerodynamic_Guidance

a. Control of lifting reentry
b. Control of ballistic reentry
c. Drag brake control
d. Parachute control
Since there are many types of guidance phases, it is usually the
case that more than one guidance mode will be employed during a mission,
and more than one command mechanization subsystem will be used. Indeed,

the guidance techniques for the various phases are so different that
essentially different guldance systems are used during a mission.

Appendix B: Guidance Phases for a Typical Lunar Mission

Ascent Phase

The ascent phase begins at launch and extends to injection into a
nearearth circular parking orbit, which might have a standard altitude of
100 n mi above the earth's surface. A typical ascent phase might last
8 to 10 minutes. The objective of the guidance system is to attain circu-
larity (eccentricity equal to zero) at an altitude close to the standard
value. Guidance corrections are applied by steering the vehicle with the
gimbaled rocket nozzle and by making small changes in the thrust termination
time of each rocket stage. The disturbances to the flight path consist of
imperfectly applied thrust acceleration and external forces, such as wind
and air density variations. The position and velocity of the vehicle are
measured by integrating the outputs of accelerometers mounted on an
inertially fixed platform within the vehicle, or from ground-based tracking
radars, or from both these sources.

Parking Orbit Phase

The parking orbit phase begins at parking orbit injection and
extends to the restart of the launch vehicle for the injection phase.
Typical parking orbit durations are 1 to 20 minutes (4 to 80° of coast arc)
but they can be indefinitely long. There are usually no guidance correc-
tions required during this phase, but some vernier adjustment of the errors
remaining from the ascent phase might be made. The disturbances to the
flight path are negligibly small for short coast arcs, but otherwise
atmospheric drag becomes important. The position and velocity of the
vehicle are determined as in the ascent phase, but celestial observations
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can be incorporated if the parking orbit is sufficiently long. A
rendezvous and docking of two or more vehicles may occur in this

phase, the purpose being to assemble a spacecraft capable of completing
the remainder of the mission. The rendezvous does not alter the
essential character of the guidance problem and will not be discussed
here.

Injection Phase

The injection phase begins at restart of the launch vehicle and
extends to injection into earth-moon transfer orbit (which is an
ellipse relative to the earth with eccentricity of 0.987 for a 66 hour
transfer). The duration of the injection phase is typically 2 to 3
minutes. The objective of the guidance system is to attain a transfer
orbit which will cause the spacecraft to impact the desired target point
on the moon. The corrections are made as in the ascent phase. The
disturbances to the flight path are primarily due to imperfectly applied
thrust acceleration. The position and velocity of the vehicle are
determined as in the ascent phase.

Midcourse Phase

The midcourse phase begins at injection and extends until the
spacecraft enters the "sphere of influence' of the moon, a point which
is not precisely defined but is approximately 60,000 km from the moon.
The duration of a typical midcourse phase is roughly 50 hours. The
spacecraft is separated from the launch vehicle during this period. The
primary objective of the guidance system is to correct for errors in the
injection phase, thus providing a vernier adjustment. There are in
addition some small disturbances to the flight path to consider, such as
solar winds, leaking gas jets in the attitude control system, and errors
in the assumed values of the physical constants which define the mathe-
matical model used to construct the standard trajectory. The orbit is
determined from celestial sightings and/or earth-based radar data. The
guldance corrections are performed by applying short—duration impulses of
acceleration (on the order of a minute long) with a small rocket engine so
as to achieve "delta functions" of velocity. The magnitude of the correction
is determined by the duration of the thrusting, and the desired direction
is attained by properly pointing the spacecraft. One or more corrections
might be made, the first no sooner than 5 hours after injection so as to
allow time to determine the orbit, and others (usually not more than two)
as required to null errors in the previous correction. The total impulse
applied in the midcourse phase depends primarily on the injection error,
but is typically less than 100 m/sec.

Approach Phase

The approach phase begins when the spacecraft enters the sphere
of influence of the moon and extends until just prior to begimning of
the terminal phase, a period of typically 15 hours. The objective of
the guidance system, the disturbances to the flight path, and the
techniques for determining the orbit and applying the guidance corrections
are the same as in the midcourse phase. The trajectory is a moon-centered
hyperbola with a hyperbolic excess velocity of typically 1.0 to 1.2 km/sec.
Two or more corrections will probably be made, based on orbit determination

19



GUIDANCE MODES

measurements which sense the position and/or velocity of the spacecraft
relative to the moon. Examples of such observations would be on-board
sightings of the angles between the target center and certain stars and/or
measurement of the change in spacecraft speed as it is acted upon by the
moon's gravitational attraction. It is the gathering of this target-
relative type of orbit information which distinguishes the approach

phase. Since the ultimate mission accuracy very likely will depend on
this information, the approach guidance phase is one of the most important
of all. It supplies the final vernier corrections to the orbit.

Terminal Phase

The terminal phase begins at the completion of the last approach
correction and extends through the final thrusting required to complete
the mission, which might be a retro-braking into satellite orbit, a
direct descent to the lunar surface, or a combination of these two
maneuvers in order to descend to the surface from parking orbit. Integrated
accelerometer data would be used during the thrusting periods, the initial
conditions being obtained from the orbit parameters estimated during the
approach phase. Celestial measurements and/or earth-based tracking data
would be employed, if possible, during the coast periods. Only small
impulsive corrections made would be during the parking orbit, if there is
one. Thus the terminal phase is similar to the ascent-to-injection phases,
with appropriately modified guidance objectives.

Appendix C: The Targeting Problem

Although the objectives of the guidance phases are different, it is
obviously necessary that they be compatible and lead to the satisfaction
of ultimate mission objectives. Thus an important aspect of guidance
analysis 1is the targeting problem, where:

Definition 8: Targeting a given guidance phase is the task of
analytically and/or numerically specifying the objectives of that phase.

Thus targeting 1s concerned with the practical task of piecing together
the solutions of sequence of two-point boundary value problems so as to
devise an overall solution of the complete problem. The targeting problem
is almost synonomous with the guidance theory problem to analysts primar-
ily concerned with guidance maneuvers which take the form of velocity
impulses, while analysts concerned with continuous thrusting think of
targeting in terms of specifying end conditions. In the terminology of
optimization theory, targeting may be thought of as the task of specifying
the transversality conditions for any guidance phase, given that the
trajectory has been segmented into phases.

The conic formulae are used extensively in targeting, for motion
during a coast period in a drag-free environment can usually be closely
approximated, with perhaps some empirical correction terms, by the
solutions of "patched" two-body problems. Thus for guidance purposes a
closed form solution is valid in these segments of the trajectory, and
the objectives of a given guidance phase can be stated as attaining a
certain combination of orbital elements. A dynamic programming argument
can be ugsed to develop the sequence of desired elements for all phases
by working batkward from mission termination. For example, the objective
of a retro thrust maneuver to obtain injection into a terminal satellite
orbit about a planet can be specified in terms of the elements of that
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orbit. The objectives of the approach phase can be specified in terms
of the elements of an approach hyperbola which will be optimal for the
retro phase. The objectives of the midcourse phase can be specified in
terms of the elements of a heliocentric transfer ellipse which will
yield an optimal approach hyperbola. The objectives of the near-earth
injection phase can be specified in terms of the elements of the earth-
escape hyperbola which will yield an optimal heliocentric transfer
ellipse. Lastly, the objectives of the initial ascent from the launch
pad can be specified in terms of the elements of the near-earth parking
orbit which yields an optimal injection phase.

The notion of a "patched" conic is not a precise one, for the
actual trajectory 1s continuously attracted by many bodies. The
guidance analyst does not consider the conics to be joined at fixed
points on the trajectory, however, but instead they are "asympototically
matched"” in order to yield a much better approximation of the true
motion. That is, the target planet can be considered massless for the
purpose of injection and midcourse guidance analysis, and the position
and velocity at closest approach to the target can then be used to
determine the asymptote of the approach hyperbola (reference 29). The
magnitude of the position vector at closest approach is the impact
parameter (b), and the velocity vector is the hyperbolic excess velocity

(;m). The energy and angular momentum of the approach hyperbola are then

given by ¢, = |;m{2 and ¢, = b|;;|, respectively. The errors introduced
by such an”approximation dre due to the differences in gravitational
acceleration of the target and spacecraft caused by the attraction of
non-target masses acting during the approach phase (such as the sun),
and are usually negligibly small compared to other sources of gulidance
system error.

It is usually necessary to predict and/or control the time of
flight to closest approach to the target. Consistent with the notion of
a massless target, one might take the % coordinate axis in the direction

of the target-spacecraft relative velocity (;;) as determined on the
standard trajectory at the standard time of closest approach (tfs).
predicted first-order change in impact time then becomes

The

8x, (t.)
e o
f —
fv, |

This approach to the problem is well-suited to optimization analysis, for
the minimum time trajectory is obtained by minimizing x., at the fixed time
t.. Another more commonly used technique is to employ %he so-called
linearized-time-of-flight, which is the time of closest approach to a massy
target corrected for the non-linear effects of the impact parameter, given
by (references 30 and 31)

t. = t(closest approach) + In e

L

v,
where e is the eccentricity of the approach hyperbola. It can be demon-
strated analytically and numerically that tL behaves almost as a linear
function of the midcourse correction components.
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Appendix D: A Simple Stochastic Control Problem

The discussion of guidance modes presented here deals with the
deterministic guidance problem, assuming that random navigation and
systematic errors can be treated separately. As indicated in Part 2,
this is a reasonable assumption for many applications, but does mnot
hold for problems where the random errors are large, or where the
guidance corrections are applied on the form of impulses at times which
are not a priori specified. In these situations the deterministic
approach is not appropriate, and a stochastic guidance law should be
devised.

The stochastic control problem can be illustrated by a simple
example. Suppose that at the {nitial time t the final state xl(tf) is
known to be of the form

x (€)= g (u, a)

where u is some scalar control parameter, and o is some scalar parameter
characterizing the motion between t and t_. For example, o might be
the initial condition x,(t ), or the magnigude of a perturbing accelera-
tion acting between t and t_. Suppose the navigation system has provided
an estimate of a, denoted by a*, but there is an error in this estimate,
denoted by e=(a*-a). Suppose this unknown error is a zero mean, Gaussian
random variable with variance o over the ensemble of all similar
experiments. The problem is to choose the u which in some sense minimizes
X, . If the estimates were perfect (e=o), one would seek a u® such that
'g-ﬁ (u°, a*) =0
In the stochastic case, however, the error in the estimate can be
arbitrarily large, so one must deal with the statistical expectation
(E [-]) of the derivative. This might be expressed in the form of a
Taylor series as

3
-k 28 (°.0) = li g | 2
0=E [au (u ,a)] E [( ) + 5 aa} e+3 (au - €
3u Ba du aa

+ higher order terms in et ]

- [l

3 5
2) o+ 3 (Ls_) o

{Bu aa
+ [higher order terms in 02]

where the coefficients of the Taylor series are evaluated as functions
of u° and a*, and properties of a Gaussian distribution have been used
in computing the expectation (i.e., the expected value of the odd moments
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are zero, and the expected value of the even moments are expressible in
terms of 0¢). Thus it can be seen that the statistics of the errors in
the estimate become inseparably mixed into the optimization problem, and
it could be difficult to find u®. The Taylor series method might not be
the best approach, expecially for states of higher dimension. In any
case, one is conceptually faced with solving an infinite number of
optimization problems corresponding to every possible value of e, and
choosing a weighted (according to the probability of occurrence of the
values of €) average of the solutionms.

A still more subtle problem arises if it is desired to choose
two guidance parameters (ul, uz) to minimize

x () = g (uy, uy, @)
subject to

xz(tf) = gz(ul, uy, a) = given value

Analogous to the deterministic case and the previous example, one is
tempted to minimize

E [g;(uy, vy, o) + v gy (uy, uy, @)]

where v is a Lagrange multiplier. Conceptually this corresponds to
solving an infinite number of optimization problems where the end
condition is satisfied each time, and the Lagrange multiplier has to
be treated as a random variable. There is no reason to expect that suc
solutions exist, however. Alternatively, one seeks to minimize

E [g(u, Uy, )] + v Elg) (u;, u,, @]

where v is a fixed constant. In this case the end conditions are
satisfied "on the average", that {is, the expected value of the end
conditions satisfy the constraint but individual members of the
ensemble generally do not.

It appears that stochastic control considerations analogous to
those discussed in this simple example will arise in the case of
impulsively applied guidance corrections. Some qualitative and approxi-
mate solutions of such problems have been obtained (references 24 - 28),
but more work in this area is clearly indicated.

23



GUIDANCE MODES

References

1.

10.

11.

12.

13.

14,

C. G. Pfeiffer, "Guidance of Unmanned Lunar and Interplanetary Space-~
craft", Celestial Mechanics and Astrodynamics, edited by Victor G.
Szebehely, (Academic Press, New York, 1964), pp. 259-279.

C. G. Pfeiffer, "Guidance Analysis,” Lunar Missions_and Exploration
(John Wiley and Soms, Inc., New York, 1964), pp. 276-307.

R. H. Battin, Astronautical Guidance, (McGraw-Hill, New York, 1964).

R. F. Hoelker and W. E. Miner, "Introduction into the Concept of
the Adaptive Guidance Mode,” Aeroballistics Internal Note No. 21-60,
Marshall Space Flight Center (December 28, 1960).

A. R. M. Noton, E. Cutting, and F. Barnes, "Analysis of Radio-Command
Midcourse Guidance,” Technical Memorandum 32-38, Jet Propulsion
Laboratory, Pasadena {(June 1959).

A. E. Bryson and W. F. Denham, "Multivariable Terminal Control for
Minimum Mean Square Deviation from a Nominal Path," Proceedings of
the TAS Symposium on Vehicle Systems Optimization, (Garden City,
N. Y., November 1961).

J. V. Breakwell, J. L Speyer, and A. O. Bryson, "Optimization and
Control of Nonlinear Systems Using the Second Variation,” SIAM J.
Control 1, (1963) pp 193-223.

H. J. Kelley, "Guidance Theory and Extremal Fields, "Trans. Inst.
Radio Engineers 7, (1962) pp 75-82.

S. E. Dreyfus, Dynamic Programming and the Calculus of Variations,
RAND Report R-441-PR (August 1965).

W. E. Miner, D. H. Schmieder, and N. J. Braud, "Path Adaptive Mode
for Guiding Space Flight Vehicles," Progress in Astronautics and
Rocketry, Vol. 8, Academic Press, 1962).

W. E. Miner, B. D, Tapley, W. F. Powers, 'The Hamilton-Jacobi
Method Applied to the Low-Thrust Trajectory Problem," paper
presented at XVIIT IAF Conference, Belgrade, Yugoslavia,
(September 29, 1967).

R. Courant and D. Hilbert, Methods of Mathematical Physics,
(Interscience Publishers, Inc., New York, 1953).

H. J. Kelley, Gradient Theory of Optimal Flight Paths, ARS Semi-
annual Meeting, Los Angeles, California, May 9-12, 1960 ARS Journal,
(October 1960).

A. E. Bryson, and W. F. Denham, A Steepest-Ascent Method for Solving
Optimum Programming Problems, Report BR-1303, Raytheon Missile and
Space Division, (August 10, 1961).

24



GUIDANCE MODES

15. S. R. McReynolds, "A Successive Sweep Method for Constructing Optimal
Trajectories," PhD. dissertation, Harvard University, Cambridge,
Massachusetts (September 1966).

16. R. McGill and P. Kenneth, "Solution of Variational Problems by
Means of a Generalized Newton-Raphson Operator', Grumman Aircraft
Engineering Report GRD-100A, April 1964,

17. C. G. Pfeiffer, "A Successive Approximation Technique for
Constructing a Near-Optimal Guidance Law," paper presented at XVIII
IAF Conference, Belgrade, Yugoslavia, (September 29, 1967).

18. I. E. Smith, "General Formulation of the Iterative Guidance Mode,"
NASA Report TM X-53414, (22 March 1966).

19. G. W. Cherry, "A General, Explicit, Optimizing Guidance law for
Rocket Propelled Spaceflight," Proceedings of the ATAA/ION
Astrodynamics Guidance and Control Conference, (24 August 1964),

20. "Centaur Explicit Guidance Equation Study Final Report," TRW
Technical Report No. 08768-6002~R000, Prepared for NASA Lewis
Regearch Center, Under Contract No. NAS3-3231, Amendment 19
(17 January 1967).

21. F. Teren, "Explicit Guidance Equations for Multistage Boost
Trajectories," NASA Report TN D-3189 (6 August 1965).

22. F. M. Perkins, "Derivation of Linear-Tangent Steering Laws," Air
Force Report No. SSD-TR-66-211, Aerospace Report No. TR-1001(9990)-1,
(November 1966).

23. H. M, Robbins, "Optimal Steering for Required Velocity Guidance",
Navigation, 12, 1965, pp 35.

24. R. J. Orford, "Optimal Stochastic Control Systems," J. Mathematics
Anal. Applications 6, (1963) pp 419-429.

25. A. Rosenbloom, "Final Value Systems With Total Effort Constraint",
Proceedings of the First International Federation of Automatic Control
(Butterworth Scientific Publications, Ltd., London, 1960).

26. J. V. Breakwell, "The Optimum Spacing of Corrective Thrusts in
Interplanetary Navigation," Mathematics in Science and Engineering
(Academic Press, Inc., New York, 1962), Vol. 5.

27. C. G. Pfeiffer, "A Dynamic Programming Analysis of Multiple Guidance
Corrections of a Trajectory," AIAA Journal, Vol. 3, No. 9 (September 1965)
Pp. 1674-1681.

28. D. W. Curkendall, "Monte Carlo Simulation of an Adaptive Policy for

Multiple Impulse Correction of the Trajectory of a Spacecraft,” AAS
Preprint (February 1965).

25



29.

30.

31.

GUIDANCE MODES

W. A. Kizner, A Method of Describing Miss Distances for Lunar and
Interplanetary Trajectories, External Publication 674, Jet
Propulsion Laboratory, Pasadena (August 1959).

J. 0. Malloy, "Non~linear Behavior of Time of Flight to Closest
Approach," Unpublished Jet Propulsion Laboratory Internal
Memorandum, Pasadena (1963).

J. V. Breakwell and L. M. Perko, "Matched Asymptotic Expansions,
Patched Conics, and the Computation of Interplanetary Trajectories,"
Progress in Astronautics, (Academic Press, Inc., New York, 1966),

Vol. 17 pp 159-182.

26




OPTIMAL GUIDANCE FROM HYPERBOLIC
TO CIRCULAR ORBITS
By T. N. Edelbaum

Analytical Mechanics Associates, Inc.
Cambridge, Massachusetts

27






OPTIMAL GUIDANCE FROM HYPERBOLIC TO

CIRCULAR ORBITS

T. N. Edelbaum
Analytical Mechanics Associates, Inc.
Cambridge, Massachusetts

ABSTRACT

An approximate analytic solution is developed for minimum fuel guidance
from an arbitrary point on a hyperbolic orbit into a specified circular orbit. The
hyperbola must lie close to the plane of the circular orbit and its periapsis radius
must be close to the radius of the circular orbit. Optimization of the midcourse
impulse, the finite-thrust terminal burn, and of both maneuvers in combination
is considered. The particular problem treated is intended as a simple example

of a new, unified guidance technique.
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OPTIMAL GUIDANCE FROM HYPERBOLIC TO CIRCULAR ORBITS

NOMENCLATURE

Exhaust velocity

Eccentricity of nominal approach hyperbola

True anomaly

Thrust

Mass

First moment of acceleration during final burn
Second moment of acceleration during final burn
Radius

Time

Corrective velocity change

Relative velocity at nominal target interception
Circumferential component of position at nominal target
Radial component of position at nominal target
Out-of-plane component of position at nominal target
Thrust angle with local horizontal

Thrust angle out of orbit plane

Gravitational constant of planet

Rate of change of «

Rate of change of 8

Subscripts

Critical

Component of critical plane correction in orbit plane
Component of critical plane correction out of orbit plane
Noncritical

Periapsis

Beginning of terminal burn

Centroid of terminal burn

End of terminal burn
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INTRODUCTION

In recent years, there has been increasing interest in the use of optimi-
zation theory for the guidance of space vehicles. Much of this work has been
deterministic and is based upon the idea of flying 2 minimum fuel trajectory
from the vehicle's current state to the desired final state. The early work in
this field either linearized both the state and the control around the nominal
trajectory (second variation guidance, Refs. 1, 2) or else numerically fit the
control to a pencil of optimal trajectories which achieved the desired final
state (path adaptive guidance, Ref. 3). A more recent trend has been to use
analytical solutions to optimal trajectories for various approximations to the
full equations of motion (Refs. 4-6). The latter technique is now widely used
for booster guidance but space-craft guidance is still largely based upon va-
rious ad hoc approximations (Refs. 7, 8). What is needed is a unified theory
for the optimal guidance of space vehicles which can handle various missions
and phases of flight, Such a theory might be developed by the onboard genera-
tion of nominal trajectories with the use of neighboring extremals for some
segments of the trajectory and analytical solutions of approximations to the full
problem for the other segments of the trajectory. While the concept of a neighboring
extremal may be used (as in second variation guidance), it will not be permissible
to linearize the control (as is done in second variation guidance) because many of

the portions of the trajectory have no control.

The present study represents a first step in the development of a unified
theory of optimal guidance of space vehicles, The theory is for minimum fuel
deterministic guidance of high thrust vehicles such as an advanced kick stage.

It treats both midcourse and terminal guidance in a unified fashion for variable-
time-of-arrival missions. The primary application would be to orbiter missions

and to rendezvous missions.
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The theory is developed by considering a particular example which is
simple enough to allow explicit development of the equations but still reflects
many of the difficulties to be encountered in more complicated examples. The
particular example treated is guidance in a central gravitational field from a
hyperbolic approach condition into a desired given terminal circular orbit. The
time for this operation is open and the initial perturbations from the nominal
approach hyperbola are taken to be small. The nominal approach hyperbola is
tangent to, and in the plane of the circular orbit. However, the perturbations

around this nominal trajectory may occur in three dimensions.

The analysis is divided into three parts. First, a general solution is
given for an optimal midcourse correction of a trajectory which has a finite
terminal impulsive maneuver. The special case of the problem considered in
this paper is treated in this section. The second part of the paper is concerned
with the motion during a finite thrust terminal burn. On the basis of this analysis,
due largely to Robbins (Ref. 9), a guidance logic is proposed for guidance during
the terminal phase. In the third part of the paper, the terminal maneuver and
midcourse maneuver are considered together so that an overall optimization of

the combined corrections may be carried out.
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ANALYSIS

I - Optimum Midcourse Correction

Most existing theories of optimal midcourse guidance are for cases where
all of the corrections are infinitesimal corrections in the neighborhood of an un-
powered freefall trajectory (e.g. Refs. 10-13). It is necessary to extend this
theory to the case where the nominal trajectory may contain powered arcs of
finite magnitude. This section will consider the simplest case of such a problem.
For this case, the nominal trajectory has a single finite impulse at its end and
represents an optimum variable-time-of-arrival rendezvous or orbit transfer.
At some time, it is discovered that the actual trajectory has departed by 2 small
amount from the nominal trajectory and a correction must be made in order to
insure that the original objectives of the mission will be met. In many cases,
only a single midcourse correction will be necessary. This will be true for
the particular example treated in this paper and is the only case that will be
considered herein. The three components of the midcourse velocity correction
will produce changes in three components of the terminal position and in three
components of the terminal velocity. A special co-ordinate system has been
used for the analysis of variable-time-of-arrival position guidance which is
also useful in the more general problem under consideration. This co-ordinate
system makes use of a direction known as a non-critical direction (Refs. 10-11).
A small velocity impulse in a non-critical direction will produce changes in the
terminal position which are parallel to the relative velocity between the vehicle
and its target at the nominal arrival time. In the case of an orbiter mission, this
relative velocity vector may be taken as the direction of the terminal impulse.
At right angles to the non-critical direction is the critical plane in which the

position deviations which are orthogonal to the terminal impulse are corrected.

The total velocity correction in addition to the nominal characteristic velo-

city of the nominal trajectory is given by Eq. 1.
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¢ nc aunc ne auc c (H
This is a first order expression and considers both the velocity change in the
midcourse impulse and the corresponding changes in the terminal impulse.
The first term is simply the Euclidean norm of the velocity changes in the
critical and non-critical directions. The magnitude of the velocity change in
the critical plane will be determined by the requirement that the position devia-
tion normal to the direction of the terminal impulse must be reduced to zero.
The component of velocity in the non-critical direction will be used to reduce
the relative velocity and the magnitude of the terminal velocity impulse. The
second term represents the change in the magnitude of the terminal impulse
due to a small impulse in the non-critical direction, while the third term re-
presents the reduction in magnitude of the terminal impulse due to a small
impulse in the critical direction. As we are only considering first order terms,
only the changes in velocity parallel to the finite terminal impulse need be
considered. The optimum magnitude of the component of the midcourse impulse
in the non-critical direction may be found by differentiating Eq. 1 with respect
to this velocity component and setting the derivative equal to zero. Eq. 1 always
possesses a single minimum if the nominal trajectory is optimal. The optimum
magnitude of the component of velocity in the non-critical direction is given by
Eq. 2, while the corresponding minimum cost due to the trajectory correction

is given by Eq. 3.

(2)

du c (3)
c
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Egs. 1 through 3 represent the general linear solution for the optimum
magnitude and direction of a single midcourse impulse at a specified location
when there will be a large terminal impulse and when the transfer time is
open. For the deterministic case considered herein, such an impulse at the
earliest possible time will normally provide an optimum correction. For example,
this is always true for the transfer from a hyperbola to a nearly coplanar circle
considered herein. For any particular case, the optimality of a single correc-
tion may be checked by calculating the primer vector (Refs. 14, 15) along the
unpowered trajectory. If the primer vector exceeds the magnitude of unity
at any point other than the initial and terminal points, an additional impulse
will be required for an optimum trajectory. Ref. 15 suggests a method for

calculating this multiple impulse correction.

It should be noted that this optimum midcourse correction depends only
upon the position deviations normal to the direction of the final impulse. It
does not depend upon any of the velocity deviations at the terminal point on the
trajectory. The velocity deviations normal to the terminal impulse do not affect
the fuel consumption to first order and are neglected, while the deviation parallel
to the final impulse is corrected by the final impulse and does contribute linearly

to the total characteristic velocity.

For the particular example treated herein, the nominal trajectory is a
hyperbola which is coplanar with, and tangent to, the terminal circular orbit.
The deviations from the nominal position and velocity of the periapsis will be
analyzed in a Cartesian inertial coordinate system whose x-axis is aligned with
the direction of the circumferential final impulse. The y-axis will be radial and
the z-axis will point out of the orbit plane. The rates of change of the signifi-
cant components of the periapsis position and velocity with respect to the magni-

tude of a midcourse impulse are given by Eqs. 4 through 6.
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dy R3
P _ p ~ 2+e+ecosf e :
T ,H(e+1) (1-cosf) =g = cosa sinfsina | cos B

4
/.3
dz R _(e+1) .
_P_ P sin f sin B
du M l+ecosf (5)
dj(g cos B
ol [(1+ecosf)cosa+esmfsma] or1 ()

The noncritical direction is in the plane of the circular orbit and is given by Eq. 7.

@na = [ 1-cosf 2+e+ecosf
ne 1l+cosf 1+ecosf (7

This is the direction of thrust which will produce no change in the periapsis radius

to first order. It is now convenient to reference angles in Eq. 6 to the non-critical

direction to yield Eq. 8.

d_.x'B W 1+cosf (e+1)cos(a—anc)—2«/l—cosf lzi—‘l“o“sin(a-a )

ne
du

cosB

N/(e+1)2(1-cosf)+2(1+ecosf)(2+e-cosi)
(8)

From Eq. 8, the partial of the terminal impulse with respect to a midcourse im-

pulse in the non-critical direction can be found as Eq. 9.

ﬂ_ Ep_ _ v 1+cosf (e+l)

f(e+1)2(1-cosf)+2(1+ecosf)(2+e—cosf)
9)
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Eq. 9 varies monotonically with distance from the periapsis, between the two limits

given by Eq. 10.

€ — <
e+l du ! (10)
ne

The left-hand limit is the value at an infinite distance while the right-hand limit
is the value at periapsis. The magnitude of this quantity is always less than unity,
as it must be if the single correction is to be optimum. By using Eqs. 2, 4, and
5, the three components of the optimal midcourse correction may be found as

Egs. 11, 12, and 13.

u =-y M{e+1) l+ecosf
cy P / 3 —
Rp(1 cosf) “/(e+1)2(1—cosf)+2(1+ecosf)(2+e—cosi)

(11

—z ) 1+<?osf
cz R3(e+1) sinf
P (12)

J1+cosf (e+l) /u 2+u 2
cy cz

‘/2(1+ecosf)(2+e—cosf)-2(e+1)2cosf

e
1t

nc

~

(13)

Finally, the total additional cost of the midcourse impulse and the change in the
magnitude of the terminal impulse due to position deviations in the periapsis is

given by Eq. 14,
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+u

2 i
26V=/2(1+e cos f)(2+e -cos f) -2(e +1)° cos { u 2 2
cy cz

2(1+ecosf)(2+e-cosf)+(e+1)2(1-cosf)

2./ 1-cosf 1_+e+c_losi_ u

. e cy

\/2( 1+ecosf)(2+e-cosf)+(e+1)2(l—cosf)
(14)

It is interesting to compare the fuel consumption due to this optimum
correction strategy with the fuel consumption of a technique which has been
used previously, namely the minimization of the magnitude of only the midcourse
impulse. Figure 1 illustrates the total magnitude of velocity corrections due
to a midcourse correction impulse at the illustrated locations and in the illus-
trated directions. The magnitude of each arrow represents the total corrective
velocity (Eq. 14) necessary to correct a unit displacement in periapsis altitude.
The arrows above the hyperbola are the corrections necessary to raise the
periapsis while those below the hyperbola are those necessary to depress the
periapsis. At each point there are two arrows which are diametrically opposite.
These arrows are in the critical direction which minimizes the magnitude of
only the midcourse impulse. The arrows are not of the same length because
the change in the magnitude of the terminal impulse due to raising or to lowering
periapsis is of opposite sign. The two shorter arrows at each point represent
the optimum corrections. The directions of these arrows are symmetric with
respect to the non-critical direction which is orthogonal to the critical direction.
The figure shows that the optimum correction strategy always saves fuel rela-
tive to the other strategy and that the relative fuel saving becomes quite large

as the vehicle gets closer and closer to periapsis.
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II - Terminal Maneuver

The finite thrust terminal maneuver for injection into the circular orbit
cannot be approximated as an impulse because of its relatively long duration.
The guidance for this terminal maneuver is developed by utilizing an approxi-
mate solution of the equations of motion. This approximate solution is a direct
application of a theory due to Robbins (Ref. 9). It represents a second order
expansion of the impulsive solution for the optimal trajectory in terms of in-
verse powers of the average acceleration. Robbins' theory can theoretically
treat any thrust acceleration schedule because it is based upon the moments
of the acceleration about a centroid time. For the practically important case
of constant thrust, the moments about the centroid of the finite thrust burn
are given by Eqs. 16-19, while the characteristic velocity of the maneuver

is given by the standard rocket equation, 15.

2 m
Av = f %dt=cl,n—g
tO 2
t2 .
M, = ft To(t-t))dt=0
0

(15)

(16)

an

(18)
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_°FE 2
M2— Jt o (t-t) dt
0
(t, -t )" AV 2 4
_ % [I_L(él> Lol (A +}
12 60 c 1920 c (19)

Robbins' analysis is carried out in an inertial Cartesian coordinate system
whose origin is at the location of the nominal impulsive burn and whose x-axis
is aligned with the direction of the impulse. For the present problem, the
impulse is circumferential and that will be the direction of the x-axis. The y-
axis will be taken to be radial and the z-axis will be taken to be normal to the
first two axes. The analysis in this rectangular co-ordinate system is then
developed by ignoring all powers of the inverse of the average acceleration
higher than the second. Robbins shows that, for the time open case, this
assumption implies that small angle formulas may be used, that the optimal
thrust direction is a linear function of time, but that the gravity gradient in

the nominal direction of the impulse must be considered in the analysis. With

these assumptions, the equations of motion are given by Egs. 20-22,

(20)

. F
Y+ 55 o=- o (agtwt) (21
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i= % (B, +0t) (22)

The terminal boundary conditions are such that the vehicle will end up
on a circular orbit at the desired nominal radius. In this Cartesian co-ordinate
system and with these approximate equations of motion, these boundary conditions

are given by Egs. 23-27.

2
t
i‘2=~I‘1‘T -5 i—
R 23)

vo=o B
Yo = - t
2772 2 (24)

2
T
2772 2 (25)
2, =0 (26)
z, =0 @0

The integration of the equations of motion may be carried out by standard

techniques to yield Eqs. 28-32.
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3

f o=k (1.1 4 27, & av 2 g2 p 2
X =X L1732 R (ty-ty ] x0R3(t2'to)'2 [z'al"sl‘Rs tz]

2 i 26
¥y 5’0':5 (t2—t0)—AVa1 (29)
Yo =yoJ'yo(tz'to)'% RLZ (t2't0)2'AV°‘1t2 *Myw (30)
By = 2, - AVE, a
z2=z0+20(t2-t0)-AVﬁ1t2 +M20 (32)

There are five quantities that must be determined in order to meet the
five desired terminal conditions. These quantities are the directions of the thrust
at the centroid time as well as the rates of rotation during the burn and the total
duration of the burn. To this order of approximation, these guantities are given

explicitly by Egs. 33-37.

oL B
yo+ Bt
. - 0 RZ 0
1 AV (33)
2
o, K t
Yy .-y - o
o- 0 “00¢ RZ 2
M, (34)
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0
BI_AV
n=-z —zot0
M,y
2 2
a +8 X
- (x - /& S 0 M 23
av (xo Vv R > = *2 3 (thto'to)

R

R

M
x4 (12-t0)+—22- [ £ w2+02}
R

This completes the development of the equations of motion during the
terminal burn as well as the solution of the boundary value problem for control
of the vehicle. It is still necessary to make a feedback control law out of these
equations and to determine the times at which the thrust should be turned on and
turned off. An accurate way to create a feedback control law is to continually
redefine the position of the centroid on the basis of the estimated time-to-go
to the completion of the burn. This will cause the Cartesian co-ordinate system
to rotate and change its origin during the burn but will cause the solution to
become progressively more accurate as the terminal time is approached. With
this type of feedback control, the engine may be turned off whenever some mea-

sure of the terminal error becomes small enough.

The optimum time to turn the engine on may be determined by noting that
Robbins' theory predicts that the centroid of the final burn should be at the peri-
apsis of the hyperbola. The required length of the burn may then be determined
by substituting the control Eqs. 33-36 into Eq. 37 and referring all quantities to

44

(35)

(36)

@37



OPTIMAL GUIDANCE FROM HYPERBOLIC TO CIRCULAR ORBITS

the perigee of the unpowered hyperbola, yielding Eq. 38, The last term in

Eq. 38 is of higher order than the other terms and may generally be neglected.

2 2 2
M2 y +z z
Av=x - |#H B _2.7p P . _P_
P R R3 2 2M2 24V (38)

III - Optimization of the Combined Maneuver

The first section of the analysis considered the optimum midcourse cor-
rection if there was going to be an impulsive terminal burn. The second section
then developed the equations of motion and the cost for a finite thrust terminal
burn. This final section is intended to determine the minimum fuel consumption
for the combined maneuver with a midcourse impulse and a finite thrust terminal
burn. With a finite thrust terminal burn, it is possible to produce changes nor-
mal to the nominal thrust direction during the burn, so that part of the position
correction may be done during the terminal burn and part may be done during
the midcourse burn. The total additional cost, over and above the AV of the

nominal impulsive hyperbola, is given by Eq. 39.

. 2 - 2 r T2
o Up s )
6V = 1- | —& . opt 'p 4 =PL P
. du 2
nc dy oz
p
du
cy cy
3%/ du (y +z ) >3 M
T Uit T Rt
yp ey pr 'p 9 yp p R (39)
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The only unknowns in Eq. 39 are yp and zp which are the position displace-
ments at perigee after the midcourse impulse. All the other terms in Eq. 39
may be considered as constants and they have all been previously determined

in this paper except for the one given by Eq. 40.

15
S_P. = - TL_
Y.
p Rp Je+1l (40)

The optimum values of yp and zp may then be determined by differentiating Eq. 39
with respect to these two quantities, and setting these derivatives equal to zero.
This produces two simultaneous quadratic equations for yp and zp. These si-
multaneous equations may be solved by standard algebraic techniques, either
analytically or by iteration. Once yp and zp have been determined, the components
of the midcourse correction may be determined from the formulas in Section 1

by substituting the changes in these quantities for the total corrections considered
in Section 1. The terminal maneuver is then carried out according to the sugges-
tions developed in Section 2. Eq. 39 may also be used to determine the relative
cost of having a midcourse correction or of correcting all the position components
during the terminal burn. These comparative costs may then be used to deter-

mine the desirability of performing a midcourse correction.

46



OPTIMAL GUIDANCE FROM HYPERBOLIC TO CIRCULAR ORBITS

CONCLUSIONS
The optimum midcourse guidance correction for rendezvous or orbit trans-
fer may be found by a simple modification of the standard calculations for

position guidance.

An accurate near-optimal terminal guidance scheme can be developed ex-

plicitly using Robbins' theory of near-impulsive transfers.

A unified theory of minimum-fuel guidance can be developed for a large

class of missions.

POSSIBLE EXTENSIONS OF THE ANALYSIS

This problem can be extended to nonlinear planar corrections by using
the results of Horner (Ref. 16). The adjoint solutions corresponding to

small planar corrections are identical with Horner's.
It should be possible to generalize the analysis to arbitrary time-open

maneuvers in the neighborhood of a given time-open minimum-impulse

maneuver,
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1. INTRODUCTION

In a previous paper [ 1] we have discussed the existence of controls p that
minimize a function x° subject to the restrictions that, for every value of its
#

argument t in a metric space, p(1) is contained in some preassigned set R" (t) and

that x(p)eB v where x is a given mapping and B_ is a closed subset of a topological

1
space H. We have shown that, in a large class of problems, such minimizing controls
exist in a larger space of ''relaxed controls' and that these relaxed controls can be

approximated by original controls.

In this paper we shall assume that H is the euclidean n-space En' We wish
to investigate certain necessary conditions for minimum that might be considered a
generalization of the Weierstrass E-condition and of the transversality conditions of
the calculus of variations. In this sense our results represent an extension of
certain methods and theorems of the mathematical control theory, and specifically
of references [2] and [3], to a more general setting. The necessary conditions that
we obtain are no longer restricted, however, to minima over the space <4 of
relaxed controls but apply as well to minima over the space @ of original controls
(if such minima exist). Thus our present results also generalize Pontryagin's
maximum principle., Furthermore, the space@ is no longer restricted, as in [1],

to measurable mappings from one metric compact set to another.

Previous attempts to apply the methods of the mathematical control theory to
problems involving functions defined otherwise than by a system of differential or
difference equations were mostly limited to special, and linear, problems. Recent
results of Neustadt [4, 5] are, however, quite general. They are based on a
separation theorem for convex sets that represent certain linearizations of
constraints. Our approach is, however, different from Neustadt's; in particular,
our basic results are stated directly in the form of inequalitites involving the value
of the minimizing control at an arbitrary point rather than in the form of functional

inequalities.
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Let T and R be arbitrary sets, B a convex set, % a class of controls,
that is, mappings from Tto R, x = (xl, Ce ,xn) a given function from@x B to
En’ and B1 a given set in En' We wish to characterize a control'ﬁe@a.nd a point
b € B that yield a minimum of xl(p,b) subject to the condition x(p, b) €B1. The
necessary conditions for minimum that we derive are expressed in terms of certain
variational derivatives Dx(;, E; t*, p*) respectively Dx(;, E; t*, r) defined in
section 2. These derivatives represent, roughly speaking, the rate of change of x
when its argument ; is replaced by the function p* (respectively the constant

function r) over a '"small" set in the "neighborhood' of t*.

As an illustration, we consider, in sections 3 and 5, the "standard" problem
of the mathematical control theory of ordinary differential equations and prove a

slight generalization of the usual necessary conditions.

2. NECESSARY CONDITIONS FOR MINIMUM

Let T and R be arbitrary sets, B a convex set, @ an arbitrary class of
mappings from T to R, and Bl a set in En' The vector ;unction X = (xl, e ,xn)
is a given mapping fromgx B to En' If p: T —R, we denote by p(t) the image,
under the mapping p, of a point t in T. If the mapping p depends on some parameters
a,b,c, we designate by p(a,b, c), or by p(-;a,b, c) the mapping, and by p(t; a,b,c) the
image of t under the mapping. Similarly x denotes a mapping and x(p) the image of p
under the mapping x. We also write, when it appears more appropriate, t —p(t) to

represent a mapping.

If py and p, are two mappings from T to R, and A is a subset of T, we
designate by [pl,A;p 2] the mapping p defined by the relations

P(t) = p(t) on A, p(t) = py(t) on T-A.
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Similarly, if pl,pz, e ,pk, ; are mappings from T to R, and Al’Az’ e ’Ak are
disjoint subsets of T, we designate by [pl’Ai(i= 1,...,k); ;] the mapping p defined

by the relations
p(t) = pi(t) on Ai(i=1’ ..o,K), p(t) = b—(t) elsewhere on T.

Let T* be a subset of T, and let 4L be a collection of subsets M(t, o) of
T(t € T*, « = 0). Let ;E%, p* e ,beB, t*eT, ¢ >0, and let
p'= [p*, M(t*,0); p].

1If p! e,@ for sufficiently small ¢, and if

im L xpr,b) -xp,b)
a—+0

exists, we shall say that "x has an Vf{ ~derivative at (;,T)) with respect to (t*, p*)"
and we shall designate this limit by Dy x(;,T);t*,p*). Ifﬁ *(t*) is a subset of %

for each t* € T* and D,ﬂ x(;,T);t*,p*) is the same for all p* aﬂ*(t*) such that p*(t*) = r,

we shall write

Nl B x(p,bit*,T) or Dx(p,bit¥, )
(if A0 and the mapping t* —&§ *(t*) are fixed).
Let now p <, be B, and b € B, We shall write Dx(;,-b;b) for

lim T 6, (L-0)b + ob) - x(2,B)).
=t 0

Definition 2,1, Local variations in ,ix B.

Letp e P, b eB, T*C T, let A i Pes for k=1,2, ... ,n2, a collection of
*
subsets Nk(t, a) of T(t € T*, @ = 0), and let /P = {./f'k k=1,... ,nz}. Letj be
a mapping from T* to the class of subsets of .Q .
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We shall say that (T*, % *, ./V‘) define 'local variations for x in ‘% x B at
(_p,T))" if the following conditions hold:

(2.1.1) For t*,t;,t; € T*, k,kl,k2= 1,2,...,n2, and o, 8 = 0,

N (t*,0) C N (t*,8) if a<pg; N (t*,0)

is the empty set; Nk (t*, ¢) and Nk (t*, B) are disjoint if klsz; and Nk (t’{,a) and

1 2
Nk (tg,ﬁ) are disjoint if t’i‘ #t; and both a and 8 are sufficiently small.
2

(2.1.2) Let an array with elements Bij(i,j=1, ...,n) be represented by 8o .
Let, for every choice of t® with elements t1j € T* and of pP with elements
oY e @ x(tV), the set 2= ¥t9) in E,
such that the sets N +i(t“, ) i=1,...,m) are disjoint, and let
pr=p"(t%, 09, 0 = [pH, Nnj_nﬂ(tij,wij)(i, j=1,...,n):p] for o0 eQtD). Finally let

b? have elements le €B, 07 have elements

contain all arrays 0 with w“ = 0 which are

n n
0":0,9":{9“91’20,2 oiJSI}, o°=1—z 0",

i,j=1 i,j=1
and
n
6% .b°% = g% + z PR
i,j=1
Then

(2.1.2.1) predp;

(2.1.2.2) for fixed t°, p® and bY, the function
(w0,09) — £(w5 67) = £(uP, 69,19,09,b7) = x(p' (17, 09, ), #9.b7) from 2 x )
En is continuous in some neighborhood of (OD, 07), and has a differential at (0%, On)

(relative to O x o3,
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(2.1.2.8) for every t* e T*, p* e *(t¥), and k=1, 2,. ,

D./Vk X (p b t¥,p*¥) = D x (p,b,t*, r) exists, is independent of k, and has the same
value for all p* e JP*(t*) such that p*(t*) = r.

We can now state our general necessary conditions for minimum which we

shall prove in section 4.

Theorem 2.2, Tet (E,T)) yield the minimum of xl(p,b) in%’x B subject to the
condition x(p,b) € Bl‘ Let (T*,47*, ./% define local variations for x in .%)x B at
(I;, g), and let, for all t* € T*, R*(t*) = {p*(t*) lp*e%"(t*)}. Let, furthermore, B*l‘

be a convex set in E b * a point in Bl’ and ¢: B’i‘ —B, a continuous mapping such

1
that ¢(b;) = x(p, b), ¢(BI) c B1 and ¢ has a differential at b’{ (relative to B})

b*:b* —b*) = b*¥)b* - b* b*) i i
d¢(b1,b1 bl) ¢b*(b1)(b1 bl) (where ¢b’{(b1) is a linear operator from Em to En).

Then either

1 = = 1 —
(2.2.1) ¢ (b¥b* = Min ¢ (b¥)b*,
b1 bt ¢ By St

or there exists a nonvanishing vector A in En such that

(2.2.2) A Dx(p b; 1%, 1) 2 0 for all t* € T* and r e R*(t*);
(2.2.3) A Dx(p bb) 0 for all b €B;
and
0 - . *Yh* = - —* *
2.2.4) % - [(pb*(b o Min (%, - A) - [d:b*(bl)bl ]
b* € B’i‘ 1
for some p,o 2 0, where 61 =(1,0,...,0) € En'
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Remark. Relation (2.2.2) generalizes the Weierstrass E-condition, relation (2.2.3)
generalizes the transversality conditions at the initial point and describes the
dependence on parameters, and relation (2.2.4) generalizes the transversality

conditions at the endpoint.

Theorem 2.2 is of particular interest in the case [1] when t -R#(t) CRis
a given mapping from T to the class of nonempty subsets of R, and ﬁis the class of
measurable relaxed controls ¢ such that the probability measure o(t) is supported on
the closure of R#(t) for allt € T. We may then assert {1, Th. 2.6] that in a large
class of problems there exists a relaxed control ¢ and a point b that yield the restricted
minimum assumed in Theorem 2.2; and we may verify a priori the other assumptions
of Theorem 2.2. We are then able to state that a minimizing control o and point b
exist and either satisfy condition (2.2.1) or conditions (2.2.2), (2.2.3), and (2.2.4).
Since these relations often admit only a finite number of solutions, we can determine
a minimizing - and l;; in this sense, [1,Th. 2.6} and Theorem 2.2 often provide

constructive conditions for minimum.

3. FUNCTIONS OF CONTROLS DEFINED BY ORDINARY
DIFFERENTIAI. EQUATIONS

We shall now illustrate the use of Theorem 2.2 in certain standard problems
of the control theory, postponing the proof of the results presented in this section to
section 5. Let T be the closed interval [to,tl] of the real axis, R a separable

#
metric space, R* a mapping from T to the class of nonempty subsets of
R,B CE,B CE ,andg:E x TxR—E . In this section, and in section 5, the
[} n 1 n n n

words measure and measurable will be used in the sense of Lebesgue and A | will

represent the measure of A C T,

Letﬁ' be a class of mappings p:T —R such that t —g(v, t, p(t)) is measurable
on T for every ve En and pe.ﬁ' and [pi’Ai(i:I’ ..., k)p] eﬂ' if k is a positive integer,
each Ai is a denumerable union of intervals, and pe &', pye A (i=1,...,k). We shall
henceforth refer to elements of 9¥' as "measurable" mappings (as distinguished from

measurable mappings). We set ﬁ = {p ef' lp(t)e R#(t) on T} .
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For p eﬁ and b0 € Bo’ we consider an absolutely continuous function

y=y(*;p, bo) on T such that
/dt = y(t) = g(y(t), t,p(t)) a.e, in T
and

(3.1.2)  yt)=b.

We wish to mvestlgate certain properties of a point b € B and a mapping
p ‘p e F that minimize y (t 0, b ) on ﬁ X B subject to the restrxctmn that
y(tl,p,bo) € Bl'

We shall say that a sequence {M of closed subsets of T is "regular at ¢
if |M | ~088j—w, te MJ, and d1ameter (M )< clM | for some positive ¢ and
all j= 1 2,... . We shall say thata "measurable” mappmg p*: T —R is "admissible
at o if p*(t) e R#(t) on T and jl_i_.mm IM_1JI SM g(v, t,p*() dt = g(v, t, p*(t)) for all

ve En and all sequences {MJ} that are regular at’t.

We set
R*(?) = {p* | p* is admissible at ?}
and
R () = {p*) | p* I *(B)}
We shall also write R*(t), i etc. to represent closures of the sets R*(t), o
ete,

Assumption 3.2, For every ve En, reR, and teT, the function g(v,t,') is continuous
on R, g(v,-,r) is measurable on T, and g(-,t, r) is continuous and has continuous
first order derivatives on En' Furthermore, for every v in En there exists an

integrable function $, on T such that Ig(v,t,r)| < zpv(t) on T x R. Finally, for every
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bounded subset D of En there exists an integrable function ¢D on T such tha.

n i 9 1/2
Igv(v, t,r)f = z,'D(L) onDxTxR., Here Igl={ ¥ (gJ) s 8, is the matrix

n j=1

i, P
(g /0v), and Ig 1= T iog'/ovl1,
i,j=1
Remark. Assumption 3,2 implies that we may choose as -ﬂ' the class of all the

measurable functions from T to R.

Theorem 3.3. Let (E,EO) minimize yl(tl;p,bo) among all points b0 in Bo and all
"measurable” mappings p such that p(t) e R (t) on T and y(tl;p, bo) eBl, and let
Assumption 3.2 be satisfied. Lety = y(- :p, EO), El = }(al) and let, for k- 0,1, BY

. 1 n . s ;
X se = N : —E sly tiabl
be a convex set in Em and q&k ((f)k, , q)k) Emk Fn a continuously differentiable

mapping such that ¢>k(Bﬁ) C B, and gbk(gp = gk for some Eﬁ FBK. Let Ak be, for

k

k=0, 1, the matrix (2)¢>L/E)bf) evaluated at bﬁ, and let AL be the i-th row of this

matrix. Then either

- 1
(3.3.1) Ai Sb¥= Min A b
b*l‘s B’l*

or there exists an absolutely continuous function 2:T ~ l-jn such that
(3.3.2) () = g0V, tp(V) a.e. in T,
. T - - .
(3.3.3) z(t) = - gv (y{t), t,pt)) z(t) a.e. inT
T . .
(where g, is the transpose of the matrix gv),

(3.3.4)  lz(t){ #0on T,

(3.8.5)  2(t) + B, A() = Min  a(t) gly(t),t,r) a.e. in T,
reR¥(t)

(3.3.6) 2(t)- ADb*= Min z(t)- A b*,
(o) o0 b:‘)(B(’: (o] o0
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and

(3.3.7 (e -at) - AIE*I = Min (y6

=) Ab*
1 1 171
* ¢ B*
b1£B1

for some y > 0, Hence 51 2 (,0,...,0) € En.

In particular, if R#(t) - RonTand & ' contains the constant mapping t —r
for all r in a dense denumerable subset R of R, then ﬁ*(t) can be replaced by R in
o0

statement (3.3.5).

By combining [1, Th. 3.1} and Theorem 3.3, we can prove the existence of a
minimizing relaxed control E and a point Eo and can state some of their characteristic

properties. We require
Assumption 3. 4.

{(3.4.1) R is compact.
(3.4.2) B0 is compact and B1 is closed.

(3.4.3) There exists an integrable function g on T such that

fg v,t,r) | < w(t)onE xTxR.

(3.4.4) Letﬁ = {p:T——R |p(t) GR#(t) on T and p is measurable}. Then for
every ¢ there exists a closed subset TE of T, of measure at least |IT| - ¢, with the
property that (a) for everyt ¢ T€ and every re ﬁ#(_t) there exists a mapping pe R#,
continuous at t when restricted to T & and such that the distance from p(t) to r is at
most €; and (b) for every t ET and every h > 0 there exists a positive 6 = § (h, t) such

that R (t) and P (t) are in the h-neighborhood of each other if t eT and [t-t] <

Now let S be the class of regular Borel probability measures on R, It is well
known [9, p. 426] that a metric can be defined on S such that S is separable and the
convergence in S is the weak convergence of measures: that is, a sequence Sl’ Sy -
converges to s in § if fR c(r)sj(dr) ~ch(r)s(dr) as j — « for every continuous
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c:R —~E1. Let»d# be the set of mappings o from T to S such that o(ﬁ#(t);t): lonT

and t — c(r)o(dr;t) is measurable on T for every continuous c:R—E_. Here
R y 1

o(R';t) is the o(t)-measure of a subset R'C R.

We refer to an absolutely continuous function ¢:T —oEn as a ''relaxed curve"
if g(t )eB and §(t) belongs, a.e, in T, to the convex closure of the set
{g(g {t),t,r)lreR (t)} This definition is equivalent, in view of our assumptions and of

[1, Th. 3.1], to the statement that £ = £(- ;0, bo) satisfies the relations

£ =§ glE(t), t, ryo(drit) a.e. inT,
R

gt )=h

# .
for some ve.¢ and b0 € Bo' (This definition is also consistent with the one in

[ 1, section 3] for A= En.)
We can state

Theorem 3.5. Let B o B X T, R, R#, and g satisfy Assumptions 3.2 and 3.4, and
assume that g(t AN b' ) eB for some o' € ,4,# and b:) € Bo. Then there exist a relaxed
control o and a point b cB that minimize ¢ (t ;o, b ) on _4/# X B subject to the
condition that g(tl,a, bo) eBl, and the correspondmg minimizing relaxed curve

E=§&(- 50, bo) can be uniformly approximated on T by a sequence §1, 52, ... of
absolutely continuous curves such that gj(t) = g(gj(t), t,pj(t)) a.e. inT (j=1,2,...),

the mappings pj are measurable, and pj(t)eR (t) on T.

Let £(v, t, 5) :ng(v tr)s@r)on E x T x§, let S*(t)={seS [s(R¥() = 1} for
teT, let b = g(t ,a b ), and let F , ,qbk, and Ak be defined as in the statement
of Theorem 3.3. Then either condlhon (3. 3. 1) or conditions (3. 3.2) through (3.3.7)
of Theorem 3.3 are satisfied, with y,g,p, R*, and r replaced by, respectively,

E, f,;,S*, and s,
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Furthermore, condition (3. 3.5) of Theorem 3, 3 implies that, a.e. in T,

(3.5.1)  z(t) - gE®,t,T) = Min  7(t) - g (). t, 1)
reR

for every T in the support of ;(t), if R#(t) = RonT.

4. PROOF OF THEOREM 2.2

The proof of Theorem 2. 2 is essentially contained in the lemma that follows
and that resembles, in many respects, Lemma 3.1 of [ 3, p. 132]. The convex set

W is patterned after a construction of McShane [ 6, pp. 17-18]. Brouwer's fixed point

theorem appears to have been first applied in a similar context by H. Halkin {7, p.75].

Lemma 4.1. Let (o,b) minimize x(p,b) in & x B subject to the conditions
Xﬂ(p, b) = 0(¢=2,...,n). Let T*,.{*,j') define local variations for x inxx B at

(;, E). Then there exists a nonvanishing vector A in En such that 7\1 20,

(4.1.1)  A- Dx(p,b;t*, 1) = 0 for all t¥e T* and re R*(t¥),

and

(4.1.2) A - Dx(p,b;b) = 0 for all beB.

Proof. We shall use the notation that we have introduced in section 2. Let
v, = {Dx(p, bit*,T) [tk e T*, reR¥ (M)}, VZ:{Dx(E,E;b) lbe B}, and let W be the convex
cone in En generated by Vl U V2; that is

1 n i L
w={a vt ta anvi€V1UV2’ a = 0(1_1,...,n)}.

Assume now, by way of contradiction, that there exists no vector A with the stated
properties. Then we can easily deduce from elementary properties of convex sets

that there exists a point w = (wl, 0,...,0) in the interior of W, linearly independent
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vectors (points) wi € W, and positive numbers cl(i= 1,...,n) such that
n

1 .
(4.1.3) W < Oandwzz clwi.

i=1

o s i
By the definition of W there exist points tlJ ¢ T*, controls le eﬁ*(t 3),

points b” ¢ B and numbers 2" > 0 (i,j=1,...,n) such that
n
L4 w = )+ pxp,b;t, oY, bY) (121, ..., m)
]"1
where, for each i, 1, Dx(p b t J,p 4 b ) elther represents Dx(p b t ‘],p ) (and is
mdependent of b ), or represents Dx(p b b ) (and is independent of t‘] and p ) The

matrix (w.) (i,£=1,...,n) is nonsingular since the vectors wi are linearly independent.
Ly Iy
Let now oz be suff1c1entlv small so that the sets N (t ,01) and Nk (t » B)
] 2
are disjoint if (k t ) # (k t ), < a and 8 =a, let @ < 1, and let
n
i - kil ,.
A = GEEn|0~<6 <a/ a (i=1,...,n)
k,j=1

For every 6 eA let lJ(5) = allé ! and 01"(5) =0 respectively wl] (6) = 0and
o' (6) = g 6 if Dx(p, b tl,w] b ) represents Dx(p bt ,p ) respectively
Dx(p, b; b ) We observe that the sets Nnj+ (t . w (6 )} are disjoint and
n
ij
§7(6) = 1foréca,
A

i,j=1

We now consider, for each 5¢A, the "perturbed" mapping p' (6) = p' (t9,
pPo, W8 () = [ﬂuy Nnj_n“(tuvwl)(é NG, j=1,... ,n);;] in ﬁ and the "perturbed"
point b'(6) = §%(5) - bD in B. By condition (2. 1.2,2), the function

65— E(é) =E(W9B), 69 (6)) = x('(8), b'(5)) from A to E is continuous in some
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neighborhood A' (relative to A) of the origin 0 of En and has a differential at 0
(relative to A). Furthermore, by (4.1.4), the right-hand derivative
n
o] = ) e 0%/ 20 )08 * 1 a0,

09(5))/90"- 865 /06 l

6 1

Thus the jacobian matrix 26(0) =(a§l (0)/86])? i=1 is nonsingular.
TS B 1 n
Let a(5)= (56(0)) (£6)-£(0) '56(0) +6§), andlete = (c7,...,c).
We shall now show that the equation

(4.1.5) & =vyc -a(d)

has a solution § (y) for all sufficiently small positive y. Indeed, since g(-) has a
differential at 0 (relative to A), there exists a positive Bo such that

C

i 1 “min
Ia(é)ls4 c Gmax
max
and
SeAl if 06 < B G=1,...,m),
where
¢ . = Min cl, c = Max cl, and 6 = Max 61.
min i max i max i
Let
0 < =1 /e
<B<Bypy=Ey Bl
and

i i 1 .
A;:{(seA'l 16" - ye [szycmin(l—l,z,...,n)}.

Then we can easily verify that A; is homeomorphic to a closed ball in En, and

65

n
- ZDX(;,E;tk],pk],bk])akJ = w (k=1,..
=0

.,h).
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ye-a(8) is a continuous mapping of A" into itself. Thus, by Brouwer's fixed point
L4
theorem, there exists 6 = 6 (y) satisfying equation (4.1.5). It follows then from

relations (4. 1.3) and (4. 1.5) that

n
E6 o -E0 = @c =y ) =yws who 0
=1

.

hence
Foun=©+ yw' < £ = x'6.5)
and
o) = 0@=2 ... ).
Since p' (5(y)) Eﬁ and b (5 (y)) ¢ Bfor all § < §_and § €AY C & and since
5(y) ¢ A:}'/ and £(B(y) = x ' (6(y)), b (B (y)), we conclude that, contrary to

assumption, (;_), B) does not minimize xl(p,b) subject to the restriction that

xﬂ(p,b) = 0(-2,...,n). This completes the proof of the lemma.

4.2 Proof of Theorem 2.2, Letc = (b, bI) for b¢ B and bT ¢ B’i‘, let E = (E, E’I), and
let C = B x B’l* Then (;, E) minimizes xl(p, b) on .ﬂx C subject to the restrictions
xl(p,b) - cj)’z(b’t) =0(=1,2,...,n).

0
Let the function y = (y ,yl, N ,yn) on ﬁ x C be defined by
0 0 1
y (€)= ¥ (p,b,b3) = x'(p,b),
] 1 £ £
Y (pse) = ¥ (p,b,b%) = x (p,b) -4 (BT (=1,...,n).

Then we verify that (T*, ﬂ*,/) define local variations for y inﬁx C at (;, E). It

0 1 n
follows then, by Lemma 4,1, that there exists a nonvanishing vector p= @ g , ... .8 )
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0 1 2
in En+landavectork =@ +u,u ,...,un) inEn suchthatuozoand

(4.2.1) p - Dy(p, it r)= A+ DX(3,bit*, T) > 0 for all t* € T+ and re R¥(t%

and
- = 0. 1—= 0 — =
(4.2.2) - Dy(p,cic) = p Dx (p,bsh) + (A - 1 6,) * (DX(p,bib) -

b*)(b* - b*
<t>b,{(bl)(bl bl)) > 0 forallbeB

and b’{ € B’I, where 61 =(1,0,...,0) € En' We observe that Dx(p, b;b) = 0; hence,
setting b = b in (4.2.2), it follows that

(4] —_ —_
- B * * — hk % *
(A-us) <1>b,{(b1)(b1 bl) < 0 for all b1 €B¥.

Since u is nonvanishing, either A is nonvanishingorpu = (u , —uO, 0,...,0), uo >0,

and

_ ) 1 -
(bhb* = Min ¢bt(b’{)b’{.

¢1
b*
* *

1 b1 sBl

5. FUNCTIONS OF CONTROLS DEFINED BY ORDINARY
DIFFERENTIAL EQUATIONS

Proofs. We shall use the notation of section 3 and we shall make, atfirst, the same
assumptions as in Theorem 3. 3.
Let, for any integrable function f from T to some euclidean space, T' (f) be

the set of all the points t* in T such that [f(t*)] is finite and

1
lim  ——— § f(tydt = f(t*)
i— IMjl M,

00
]
for all sequences { Mj} ?_1 of closed subsets of T that are regular at t*. It is well

known [8, Th. (6.3), p. 118] that the set T' (f) has measure [T|.
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Now let p° be a bounded convex open set containing the range of ;, let
Lpo xp be defined as in Assumption 3.2, let D be a dense denumerable subset of
D° and R a dense denumerable subset of U R#(t), and let g(v, - ,p( )) be the
function t ——g(v, t, p(t)). Then

T* = m (T g(v,, tHNT (g(V.',;('))))ﬂT'(lbo)ﬂ [to,t )
veD ,reR

has measure |T!. We also verify that T' (g(v, +, )} D> T* and T' (g(v, () D T* for

all veD0 and re R . Indeed, let t¥e T*, ve Do, reR , and let vl, v2, ... be a sequence
o0 o0

in D converging to v. Then, by Assumption 3.2
o

lim sup

} =

e | swtne s
it

lim sup TMLT 5‘ lg(v,t,r) - g(vi,t, rldt =
j— » i YM,
}
lim sup Iv - v, [ —— { v s g @ |v-v | =120
. i IM | o [¢] l ’ vl
J— o j M,
}
for every sequence {M } that is regular at t*. Since g(.,t*, r) is continuous on DO,
we conclude that T' (g(v,-, r)) D T*. We similarly show that T' (g(v, - ,p( ») D T*

for all veDO.

2
We next define sets Nk(t, @) and the corresponding collection a/f‘ Letm=n,
and let

i~
-mi+m-k+1
n =2 , N = U
k-1, 1 k! Oy 1Moy, il
i=1
and

N ()= (t+ NJ O TteTs,ka1,...,m; 81,2000
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We then define Nk(t, o) for o = 0 as Nk(t) N, t+ 5k(t, a@)], where ﬂk(t, ) is
nonnegative and such that ]Nk(t, a)l = Min(e, lNk(t) I). We observe that diamete:
(N (t, 0)) < 2™ INk(t, a)l forall t and o, and lNk(t, o) | = o for sufticiently small ¢
and t
and t < £
We shall henceforth use the above definitions of T* and ./V,‘ as well as the

definitions ofﬁ* and R* of section 3. We shall also use the notation of Definition
2.1, Let tVeT* and p" e BxtY) (1,j=1,...,n), and let

ij iy . =
o)) @i=1,... 0]

v gt 8 By )
pr=p"(t,pT,w )= e ,Nnj_nH

for all Peq(tD). Finally, let B = B;,E = E;, and for pe #F and beB, let the

absolutely continuous function y = y( - ;p,b): T —»En be the solution of the system

¥(t) = gy(t), t,p(t)) a.e.inT,

¥t ) = 9 b).

It follows from Assumption 3.2 and from well known theorems that there
exists a neighborhood E of b in B such that the function y, as just defined, exists,
is unique, has its range contained in DO, and depends continuously on b, uniformly
inp, forallbe B and all "measurable" p such that the set {t €T | p(t) ;‘;(t)}

has a sufficiently small measure.

Lemma 5.1. Letp' =p'(t9,p0, ,0), For all teT, bsﬁ, tij eT*, and

pijosﬁ’*(tij) (i,j=1,...,n), the function (,3,b) —y(t;p', b) is continuous in some
neighborhood I'" of (OD,E) in Q(t9) x 1;; and, for alli,j=1,...,n, the limit defining
the right hand derivative of y(t;p',b) with respect to wij at 0 exists and is uniform
in T, and this derivative is a continuous function of (@, b) in I. Similarly,

1
lim = {y(t;p", bHo(b b )~ y(t;p',b.))
gss0 O 17%2701 1
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defining the right hand derivative
t:po! - I
ay(t:p'»by + 0(b, bl))/ao
6=0
exists, this limit is uniform in ' x T, and it is continuous in T x T,
Finally, let x(p,b) = y(tl;p,b). Then

D, x(p, B;t%, p¥) = Dx(p, Bsth, p*(t9)) = Z(E¥) (G(¥(tH), ¥, p*(t¥)) - E(v(t*),
k

£, p(E)) k=1, 2,. .., 02, £ eT*, p* e (t4)),
and
20 (b)
ob

Dx(p, bib) = Z(t ) (b-b) (b € B,
where the matrix function Z is the solution of the system

Z(t) = - Z(t) gv&(t),t,E(t)) a.e. inT, Z(t)=1 (the unit matrix).

Proof of Lemma 5.1, Let t® and pO be fixed. For fixed T and_j in {1,2,..., n},

5 .0
*z *= = N— —(t* > 0.
let t¥=t ", p*=p ", and M(a) Nnj-n+i( ,a) fora = 0
We observe that, for every sequence cxl, 012, ... converging to +0, the
sequence {ﬁa} = {I—V_I(aa)};l is regular at t¥, li’[a-Mal = 0 for all a, and [M(0) [Fa

for sufficiently small ¢. It follows that, for all veD°,
. 1
lim -~ 5 g(v, t,p(t))dt = g(v, t*, p(t*))
a—+0 ¢ YM(®)

ifp:;,p= p*, orp(ty=reR onT.
o
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We next consider y(t;p',b) as a function of (,,0,b). The measure of the set

{teT {p' (t9,p9,50) # p'(t9,p9, ,0) ] converges to 0 uniformly in 2(tY) when

Furthermore, [g(v,:,r) | and Igv(v, -, 1) | are bounded by some integrable function
Y 1 on Do x R, We conclude, using standard arguments, that y(t;p',b) is a uniformly
continuous function of ( ,B,b,t) and y(t;p',b) € D0 inI'x T, where I'is some
neighborhood of (07, b) in (t%) x B.

Now we fix b and sufficiently small wij((i, j) # (i,?))_as well as 1_,]_, t?, and po,
and set p(a) = p' (t%,0%, 0 ) and y(t;0) = V(t:p(a), b) for .0 = @ > Oand teT. Then,
for sufficiently small @, p(t:a) = p(t;0) for t €T - M(a), p(t:@) = p*(t) and p(t;0) = B(t)
for teM(a), y(t;a) = y(t;0) for t < t*, and, for t>t*,

At = TGt - y0)-

t
S‘ (8(y(6;0), 8 . p(8;0)) - 8(y(6;0), 6,p (9;0))) d9;
t*

hence
(.1.1) Aa) = S g, (7(6:0), 0,9 (6:0)) A(6:2) d
[t*, t] -M(a)
+1 § (&(7(6:0), 6, P*(8)) - £(7(6:0), 6, p(8)))d8 +
o
M(a)
+ j‘ (8,(F (6:0), 0.9(8;0)) - g, (7(6:0), 6,p(6:0))) (83,
[t*, 1] -M(c)
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where 37(6;01) is, for each g and o, intermediate between y(8;0) and y(9:0). Since
F(. ;c) converges uniformly to ¥( -;0) as « —~0, tg, (v, t, ¥) [<y ton

D0 x T X R, p* € R¥(t*), and T*C T' (wo), we can assert that

lim = 51 (&(5(8:0), 8, p*(8)) - £(3(0:0), 6, p(0)))dd
a—+0 M(a)

- um 2 g @ (E%:0),0, 2%(0)) - g(¥(t%:0), 0. p(0)))d0
a—+ 0 M(a)

g(V(E¥, 0), 1+, 0%(1%)) - E(¥(£%30), t%, p(t¥)),

i

and that this limit is uniform in I'x T. Furthermore,

£, (7 (030, 0.5(0:0)) - £ (3(0:0), 0, p(0:0)) |

converges to 0 with ¢, for each fixed ¢ in T, uniformly in T, because gv(- ,t, r)is
continuous, hence uniformly continuous, in some compact set containing DO, for
every t and r. Moreover, the uniform convergence, hence also the boundedness, of
the second term on the right of (5.1.1) implies that A.; ) is bounded. Since
[gv(v, t,r)l =« wo(t) onD®x T x R, it follows then that the last term on the right of
(5.1.1) converges to 0 with @, uniformly in I"'x T.

Letn(t) = lim Aft,a) for tcT. We can now conclude that  exists, is

a—~+0
unique, that this limit is uniform in I'x T, and that

¢
(5.1.2) n()= S‘ 8,(y(0;0), 6, p(0;0))y (6)d6
t*

+ gY(EF, 0), ¥, p(t¥)) - g(Y(t¥, 0), t, p(t¥)) for t > t*.
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Now we must investigate the dependence of n on (,B,b). Let (wfll, bl) and
o ; oo 2 (-
(‘”Z’bz) be both in I" and be such that w3 wy 0, and let yl( )Lpl( )1 1( ) and
yz(.), p2(.),17 2(.) represent the corresponding determinations of y(.;0), p(.;0), and

(). LetalsoM ={teT lp (1) # p,(t)} and Alt) = In (t) - m,()]. Then (5.1.2) vields
t
Al < g g @) In @) + In (e)l)de+Sv U (9)A(9)do
® M o 1 2 i o
+ S; lg, (v,(6), 6,0, (6)) - 8, (v,(0),6,p,(0)) -l ,(6) I do
+ gy, (%), tRpx(EN) - g(yz(t*).t*,p*(t*))l
+ lg(yl(t*),t*,;(t*)) - g(yz(t*),t*,E(t*))l for t > t*,

We can directly verify from (5. 1. 2) that n is uniformly bounded on I'x T. We can
show, therefore, as in a previous argument, that the third integral in the last
relation converges uniformly (on I) to 0 with ]wllj'wg |+ [bl—b2 . The first integral
converges uniformly to 0 because |M| — 0 uniformly, and the non-integrated terms
converge to 0 uniformly with [yl(t*)—yz(t*) |. 1t follows that & -) — O uniformly on T
as IwT—wg |+ lbl—b2 | —o0,

We can solve equation (5.1.2), specifically when ,,0=09 b = -l;, and

r = p*(t*), and find that, for k = n_]_ -n +_i,
D X0, Bit%, p%) = 7 (£) = ZENEGE 5, 1) - B4, 1, ().

Thus D«/ka is the same for all k and all p*sﬂ*(t*) such that p*(t*) = r.

Similar arguments prove our assertions concerning y(t;p' ,b1+ 0(b2 - bl)) as
a function of §, and yield the representation of Dx(;, B;b).

This completes the proof of the lemma.
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5.2 Completion of the proof of Theorem 3.3, We shall now show that (T*,ﬂ*,/)

define local variations for x in ﬁ x B at (;J, b). It is clear that, by construction,
the collection ./{/ satisfies condition (2.1.1). Since the sets Nk(t,oz) are unions of

intervals and pljeﬁ (i,j=1,...,n), the mapping p' belongs to é? .

It follows from Lemma 5.1 that the function (,0,60) — £(D,¢0) satisfies

condition (2.1.2.2). Indeed, we have shown there that the right hand partial
j

)

derivatives of £ with respect to each wll at wl =0 and with respect to each 9l at

i
9 1o 0 exist, are continuous, and the limits defining them are uniform for ,,0 and
60 sufficiently close to 07 . Finally, statement (2.1.2.3) follows directly from

Lemma 5. 1.

Thus (T*,ﬁ *,/V) satisfy the conditions of Definition 2.1 and Dx(;, E;t*, r) and
Dx(;, E;b) have the representations described in Lemma 5.1. All the statements of
Theorem 3.3 . except statement (3. 3.5), now follow directly from Theorem 2.2
after we set z(t) = ZT(t))\ on T. Furthermore, statement (2. 2.2) implies (3. 3.5),
with }_1*(t) replaced by R*(t). Since, however,g(v,t, -) is continuous on R for all v

and t, we conclude that statement (3.3.5) is satisfied.

Finally, consider the special case when R#(t) = Ron T and ﬂ' contains all
the constant mappings into R . In that case, for each r¢ R and t* e T*, the set
o0 oo

,ﬂ *(t*) contains the constant mapping from T to r, and ﬁ*(t*) = im= R.
This completes the proof of Theorem 3.3,

5.3 Proof of Theorem 3.5. The first part of the theorem, concerning the existence of

BO and o as well as of the approximating sequences, follows directly from [1, Th. 3.1].
- # .

Next we observe that, for S#(t) ={seS Is(R#(t))= 1} on T, S,S#, f, and » satisfy the

assumptions made in Theorem 3.3 about R, R#, g and & , respectively. Furthermore,

since f(v,t,s) = g(v,t, r) on En x T for every measure ; = s? concentrated at the single
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point ;, it follows that the set of ¢ in ,Av# that are admissible (with respect to f and
S#) at t* contains -ﬂ *(t*¥), TFinally, there exists a dense denumerable subset of §
containing {Sr Ire Rw}. We may now apply Theorem 3.3, with 8, S#, f, and 4’#
replacing R, R , g, and ﬁ , respectively, and derive directly the second part

of Theorem 3, 5.
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THE REDUCTION OF CERTAIN CONTROL PROBLEMS

TO AN "ORDINARY DIFFERENTIAL" TYPE

by J. Warga¥*

The most commonly encountered problems of the mathematical
control theory are of the "ordinary differential” type, that
is, are defined by systems of ordinary differential equations
involving control functions as well as by certain additional
relations that must be satisfied by the control functions and
the state variables. An interest has also been evidenced in
certain more general problems in which, for example, ordinary
differential equations are replaced by difference-differential,
or, more generally , delay-differential equations, or in which
absolutely continuous solutions of differential equations are
replaced by piecewise absolutely continuous solutions with at
most k jump discontinuities. The purpose of the present note
is to show that many such non-standard problems can be easily
transformed into an equivalent "ordinary differential"” form to
which all the, by now, classical results of the control theory
are directly applicable.

Let U be an arbitrary set, En the euclidean n-space,
A (C En , BC Enx En , T the closed interval [to, tl] of the real
axis, V a mapping from T into the class of nonempty subsets of U,
and f: E XTXU >~ E_ . An "ordinary differential" control problem
consists in determining a function u: T » U and an absolutely
continuous function x=(xl, x2,.., N T E, such that xl(tl)

is minimum and

* This work was supported by N.A.S.A. grant NGR 22-011-020,

Supplement 1.
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"ORDINARY DIFFERENTIAL* TYPE CONTROL PROBLEMS

(0.1) = x(t) = £(x(t), t, u{t)) a.e. in T,
(0.2)  (x(t)), x(t})) € B,
(0.3) x(t) e A (teT),

and (0.4) wu(t) e V(t) (t e T).

We shall now transform into an "ordinary differential”
form a few of the more frequently encountered non-standard
certain
problems, namely (a)adelay-differential control problems,
(b) staging problems, and (c) problems involving variable times
as well as constraints relating the values of x on a finite

subset of T. For the sake of clarity, we consider only relatively

simple versions of these problems.

1. Advance-delay-differential problems. Let Tor to’ Tyr and t1

be fixed, TO< to< tl< Tyr and let an absolutely continuous
increasing function p be defined on [To, Tll. Assume that
p(t)<t, Toip(to), and tli p(rl). Let po(t)it and

Pi41 (t) = p(pi(t)) (i=0, +1, +2,..., pi(t) € [TO, 11]). Let

U, V, A, B, and T be defined as before, and let the functions

x and u, into respectively En and U, be given on the intervals
[To, to) and (tl, T1]. Let k(t) and 2(t) (te[to, tl]) be integers

defined by py (1) ,1(t) < T < Py (k) and
Pog(r) (8] 2Ty < Pogqy-1 8-

(Such integers exist because p(t)-t is negative and bounded

away from O. We also observe that k and ¢ are step-functions).

For any function vy on [r_, 7,1, let

YO = YRy ) (), ¥(o gy (8))reees ¥(B(0)) eansy (P (y) (E)),
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"ORDINARY DIFFERENTIAL" TYPE CONTROL PROBLEMS

and let f(;,e,t) be defined for every t ¢ [to’tl]' every

e

€ En Xeoox En(k(t) + 2(t) + 1 times), and every

€ U xeeex U(k(t) + 2(t) + 1 times).

<e

We consider the problem of minimizing xl(tl) subject to
the functional equation
(1.1)  x(t) = £(X(t), 8(t), t) a.e. in [ty €1,

and subject to relations (0.2), (0.3), and (0.4). We also

restrict x to be absolutely continuous on [to,tl]. We
shall show that this problem can be reduced to the "ordinary
differential™ type.

Let k = k(tl), 7= l(tl) + 1, xi(t) = x(pi(t)) and
ui(t) = u(pi(t)) (t e (p(tl),tl], pi(t) € [To,rll),
; = (y E""’XI) and ; = (v E""'YT) (yi € En’ v, € U), and
let 6,(y,v,8) = b (1) £F¥,0) (tec (pt),ty], 1=0,1,..., K).
Let also k'’ be a positive integer defined by
P (£9) > £ > ppr 1 (ty), and let T e (p(t),t;] be defined by
pk/(?) = t,. Let y(t) = x.(t) on [?,tll and y(t) = xk/(?)
on [p(tl),?).

We now observe that our problem is equivalent to the

"ordinary differential" problem of minimizing xol(tl) subject

to the differential equations

X, (6) = ¢, (X(£),(t),8) a.e. in [p(t)), &1 (i=0,1,...,k ~1)
(1.2) , X, (£) = ¢, (x(t),u(t),t) a.e, in (T,t;]
vy = K k! Lo
0 a.e. in [p(tl),r),

and subject to the restrictions
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(1.3) %, (k) = %, (B(E))) (4 = 0,1,...,k-1),
(1.4) (y(p(tl)), X (tl))s B, y(tl) = xk/(tl)'
(1.5) x,(t) e A (te [plt)),ty), by (1) € [t 5 D),
(1.6) u;(t) e Vp;(£)) (£ e [plty),ty],

pi(t) € [to,tlﬂ

2. Staging problems. We consider the "ordinary differential"

control problem but, instead of restricting the curve x to

be absolutely continuous on [to'tll’ we require that x be
piecewise absolutely continuous, with at most k jump discontinui-
ties on the interval [to,tll. We also require that

x(Ti+)(= lim x(t)) and x(ti—)(= lim x(t)) satisfy relations

t>Ti t<T
Tl t>1,
i i

of the form (x(ri+), x(ri—)) € By C:En % En at the i-th
point of discontinuity T in [to,tll. The values of
ri(i=l,...,k) can either be preassigned, or can be freely chosen.
Ifi the latter case, however, we assume that V(t) = U for all t.
A typical example of such a problem is the guidance of a rocket
that can jettison certain "stages" when they are no longer
needed.
We let
To © tor Tkel T €
xi(e) = x(Ti + B(Ti+l-To)) (0<6<1l, i=0,1,...,k),

x.(0) = 1lim x.{(8), x.(1) = 1lim x,(6),
i 80 i i 81 i
ui(e) = u(Ti + S(Ti+1 -TO)) (0 <9 <1, i=0,1,...,k).

If the Ti(i=0,l,..., k+1) are preassigned, our problem
becomes one of minimizing xkl(l) by a choice of an absolutely
continuous function x = (xo, xl,...,xk) on [0,1] satisfying

the relations
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dxi(e)
de

(2.1)

= - Ti)f(xi(G),

T,
i+l

T, + e('ti+1 - Ti), ui(e))

(2.2) (xO(O), xk(l)) e B
(2.3) (xi(l), xi+1(0)) € Bi (i=0,1,...,k=-1)
(2.4) xi(e) eA (0<8 <1

- <B< =
(2.5) ui(e) € V(ri + e(ri+l TO)) (0<8<1, i=0,1,...,k)
If the T; can be freely chosen in some preassigned interval
[a,b], we may treat them as constant functions on [0,1], and
adjoin the following relations:
== =0 a.e. in [0,1] (1=0,...,k)
a < TO(O) i...§_1k+1(0) < b.

3. Variable times, and constraints on a finite subset of [to,tl].

We now modify the standard "ordinary differential" problem as
follows:

Let ri(i=1,..,k) be either preassigned or free to choose subject
to the relations to $Tg £eeeS Ty <ty In addition to relations
(0.1), (0.2), (0.3), and (0.4), we require that the absolutely
continuous function x satisfy the relation

(x(£)), (1) .0y x(r), x(e)) ¢ BY,

where B#

is a given set.
We may proceed as we did for the "staging" problem, except

that the relations (2.2) and (2.3) are replaced by

83



"ORDINARY DIFFERENTIAL” TYPE CONTROL PROBLEMS

#
(3.1) (xo(O), xl(O),..., xk(O), Xk(l))E B

and (3.2) xi(l) = xi+l(0) (i=0,1,...,k-1)

Northeastern University
Boston, Massachusetts
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By P. M. Lion

Assistant Professor of Aerospace and Mechanical Sciences
Princeton University
Princeton, New Jersey

SUMMARY

The necessary conditions for an impulsive trajectory to be optimum
can be stated in terms of Lawden's primer vector. Recently, the primer
vector has also been shown to have significance for non-optimal trajec -
tories, indicating how these trajectories can be improved., This paper
presents a simplified derivation of both results from a single viewpoint.
In addition, a computational scheme for determining optimum n-impulse
trajectories is suggested.

Introduction

The term '"'primer vector' was introduced by Lawden (Ref. 1) to de-
note the three adjoint variables associated with the velocity vector on an
optimal trajectory. Lawden derived a necessary condition for the opti-
mality of impulsive trajectories in terms of the magnitude of this vector.
(Optimum in this memo is defined as minimum characteristic velocity. )

Recently (Ref, 2), the definition of the primer vector has been ex-
tended to non-optimal impulsive trajectories. It can then be shown that
the primer gives a clear indication of how the original, or reference,
trajectory can be improved; i.e., how the reference trajectory can be
altered so as to decrease the total characteristic velocity while still
satisfying the boundary conditions. The two main results of (Ref., 2)
are

(1) the criterion for an additional impulse, Using this test indicates
whether or not the reference trajectory can be improved by an ad-

ditional midcourse impulse.

(2) the transversality condition. Using this test one can determine how
the interior (midcourse) impulses of the reference trajectory should
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be moved in both position and time so as to decrease the character-
istic velocity. In addition, it is possible to determine whether
initial and/ or final coasts will improve the trajectory.

In this paper the results of (Ref. 1) and (Ref. 2) are rederived from
a single viewpoint. In addition, a computational scheme for determining
optimum n-impulse trajectories is suggested,

Formulation and Notation
The equations of motion are
% =90 (x, t) (1)

where @ is the gravitational potential. For impulsive trajectories, it
is assumed that the velocity vector v = (vi, vz, va) can be altered dis-
continuously; however, the position vector x = (x2, xa, xa) must be
continuous. The criterion of optimality is the sum of the magnitudes of
the velocity increments,

J=§‘Avk|

The optimization problem may then be stated as follows: given an
initial state (v_, x ) and a final state (v, x.), find the trajectory which
connects these statgs in a given travel time, tf, such that J is mini-
mized,

Assume that some trajectory I' has been found which satisfies the
boundary conditions and consider small perturbations about T'. Let
(x, v} and (x', v') denote the state vectors on T and on the perturbed
trajectory I'' respectively. Define

Sx(t) = x'(t) - x(t)
2)
Sv(t) = v'(t) - v(t)
1f ' and ' are sufficiently close to justify a linear analysis, then
(v, 8x) are, to first order, the solutions of the following variational

equations of (1):

8% "0 1 “éx‘

5v G O v/
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where 1 is the (3 x3) identity matrix and G is the 'gravity gradient"
matrix, The elements of G are given by

- adé
gij T 3x, Ox,
1)
In second order form (3) can be written
58X = G 6x 4)

The (6 x 6) transition matrix Q(t, T) for this system can be partitioned
into four (3 x3) matrices as follows:

Q1 (t, T) =, T)
Qt, T) = (5)
Qz1(t, T)  Qeait, T)

The adjoint system to (3) is

a (o -G\ [t

— \-I 01} *./

where U and A are 3 -vectors. In second order form this becomes

Do

N=ar (6)

identical to (4). Hence the transition matrix for (A, A) will be identical
to (5):

At) Am) |

=Qft, T) (7)
Aft) A(T)

It can be shown by differentiation that the identity
A+ 8v =X * §x = constant (8)

holds everywhere on I', This equation is the basis for most of the
analysis which follows.
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Consider I', a two impulse trajectory (or two-impulse segment of
a multi-impulse trajectory), with impulses Adv, att and A4vy at tg.
The primer vector A is defined as the solution to system (6) which
satisfies the following boundary conditions:

Avo
)\(to) = /\O = ‘:Avo;
bv
Aft) =A_ = f
f £ lavy ]

That is, at the endpoints of I', A has unit magnitude and is aligned with
the velocity increment. A solution satisfying these boundary conditions
can be found if (h2 (tf, ty) is non -singular; the initial value of is
given by

.

X o= 1 -
o =z (g to)(f\ Qualty, tow\o)

f

The above definition of the primer vector is extended easily to
multi-impulse trajectories. In such cases, the right hand side of (6) is
different on the different segments. At each impulse point, ty, A s
again defined as a unit vector in the direction of the impulse

The solutions from different arcs are, therefore, patched together so
that A is continuous over the entire trajectory, The primer rate

will, in general, be discontinuous at impulse points, (On optimal tra-
jectories, however, it will be shown that A is continuous and is ortho-
gonal to A at interior impulses.)

Criterion for Additional Impulse

Consider the two impulse trajectory I' (shown schematically in
Figure 2) which goes from x, to xg¢ in the prescribed transit time.
T' may be a complete trajectory or a two impulse segment of a multi-
impulse trajectory. By Lambert's theorem (Ref, 3) there are no other
two impulse trajectories (in the neighborhood of I' } which satisfy these
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boundary conditions. There is, however, a four parameter family of
three impulse trajectories which do satisfy these conditions.

Assume that I' passes through the point Xy at t =t . The four
parameters used to describe a neighboring three impulse trajectory r
will be the time of the midcourse impulse, ty » and the position rela-
tive to I' at this time b8xp = x"{ty,) - x(ty).

T'' is constructed as follows: The impulse (Avg + Ovy) is applied
at t, sothat I'' will pass through x, + 8xy, at t,. I'' must be
continuous in position, but not in velocity. A small midcourse impulse
(dvmt - 8viy”) is required to null the position displacement at tg(6x¢=0).
Finally, the impulse (Avg+ 8vy) is applied at t; so that the final
velocity is matched,

The costs on I' and I'', dropping the higher order terms,
are as follows:

on I' : J=|oav | + |av, |
o f

on I': J'=]4v +8v |+ j6v_* -6v 'f+‘Av + 6v
[ o' m m f f

The difference in cost, to first order, is

Av Av
8J = i o+ lév t .oy -[-
IAVOI o m m

v
f
‘Avfi

From the definition of the primer vector,

§T =X ¢ bv +15v+-5v"'-l'5v
o o m m | f f

Using (8) this becomes

8J=-X_ (6v. T -8y ")+ |6y
m m m

This expression is homogeneous in (évar -ov, 7).

Denoting the magnitude of the midcourse impulse by ¢,
6J=c(1 -Am"q)

where n is a unit vector in the direction of (évm+ - évm') .
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1f 6J can be made negative, then T' represents an improvement
in cost over I'. This can occur if, and only if, p(ty,)> 1. That is, if
plt;y) > 1 it is possible, by varying the d1rect1on of &xp,, to find a T
such that the required midcourse impulse (évm - dvp, ) will point in
the direction of Am' Clearly, for this choice &J is negative.

Therefore we have the following results:

(a) If I’ is an optimum trajectory (or a segment of a multi-impulse
optimum trajectory), it is necessary that p(t) <1 for all t inthe
interval (tq, tf).

(b) If p(t)>1 for any t in the interval (tg, tf), then there exists a
neighboring trajectory with an additional impulse which lowers the
cost. To first order, the greatest improvement in cost can be
realized by applying the midcourse impulse at the time the primer
magnitude reaches its maximum, and in the direction of the primer
vector.

If the time history of the primer vector is as shown in Figure 2, then
the necessary condition for optimality is satisfied, Figure 3 shows an
example of a case where an additional impulse improves the trajectory.

These conclusions are the result of a linear analysis, and, there-
fore, effects are additive., If, then, the primer magnitude exceeds unity
at more than one point, the reference trajectory can be improved (at
least to first order) by adding impulses at both points,

Finally, if the reference trajectory is two impulse, then there is no
other (neighboring) two impulse trajectory which satisfies the boundary
conditions. If p(t) <1 for all t, <t <tg, then all neighboring trajec-
tories with more impulses actually increase the cost. In this case,
then, we have sufficient conditions for the reference trajectory to be
optimal., Figure 2 represents such a case,

Transversality

In this section, an expression is developed which gives the differ -
ential cost between two neighboring trajectories. This expression is the
analog of the transversality condition of the calculus of variations. In
this case, however, there is wider applicability since neither trajectory
need be an optimum. This is in distinction to the finite thrust case, and
is a result of the fact that 'cost' is incurred only at discrete points.
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Consider the two neighboring trajectories shown in Figure 4, Both
trajectories are initially on orbit Co at to. On I', impulses are ap-
plied at to and tg. r , on the other hand, remains on Cg until
t1 (=t, +dty) and then impulses are applied at t; and tg. Bothtra-
jectories have terminal state corresponding to orbit C; at t.

The symbol d{-) will be used to indicate noncontemporaneous
variations, that is

dx = x' (t + dt) - x{t)
To first order the relationship between dx and 6x is
dx = 6x + x dt,

On TI', the cost is

- +
J = |vo+-v0 | +|vf - v, |

and on I
- + - v
J = |v1 -vi | + |vf—(vf +6vf)E
The differential cost is given by
8T =X - todv ) - - by
J o (dvo dvo) ¢ vf (9
where dv+=v1+(t +dt)-v+(t)
[ <) o o ‘o
=ovtivtat
[} o o

=v " dt

and dv
o o o

Since v is continuous (it depends only on position and time)

av ¥ oav m=6v T
o o [
Substituting in (9) and using (8)
8T = A - bx
o [¢]
or, since 6x =dx - xtat
o o o
8T =X +dx -(A - xHhat (10)
o o o [ o
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This "transversality condition! represents the difference in cost between
two neighboring trajectories whose initial points differ in position by dx
and in time by dt, {(and whose final position and time are identical).

Note that no considerations of optimality have been required,

If the final point differs by (dty, dxg), the proper expression is

6= A+ Aot

J £ dxf+(f xf)dtf (11)
)=0

Equation (10) can be put in more familiar form by adding )\0' (;10 ';"o
and noting that dvo = vo- dto . Equation (10) then becomes

8J = -A +dv +A +dx +HAdt (12)
o [e] [o] [s] o

which is exactly the same form as the usual transversality equation for
finite thrust (optimal) trajectories. Similarly (11) becomes

5 =A - -5\ . - 3
J £ dvf £ dxf Hdtf (13)
Equations (10) and (11) are the fundamental form, however, since the
differentials are independent.

Final and Initial Coasts

To test the desirability of an initial coast, the reference trajectory
is compared with a neighboring trajectory which has been allowed to
coast (dt0 > 0) in the initial orbit (Figure 4).

Using the transversality condition (10), the difference in cost to
first order is

67 =A +dx -{A - xT)at
o o (o] [e] o

Substituting dxg = ;‘o- dt,, (the superscript minus refers to increments
along the initial orbit), this becomes
67 =A - (x " -x*)dt
o o o o
Since dto >0, 6J will be negative if
A s (xt-xt)<o0
o o [}

'
r
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From the definition of the primer A, is parallel to Av,. Therefore,
the last equation implies

-(AO-AO)<0

or

In other words, if the primer magnitude exceeds unity immediately
after the initial impulse, an initial coast would lower the cost. Figure 5
is an example of this.

Similarly, it can be shown that if

then a final coast improves the cost. The trajectories being compared
in this case are shown in Figure 6, For this case, it must be remem-
bered that, to meet the time constraint, dtf < 0. The primer in Fig-
ure 7 is an example,

Figure 8 represents a trajectory which is so far from optimal that
almost anything (additional impulse, initial coast, final coast) will im-
prove it,

Circular Coplanar Orbits

In the special case of transfers between circular coplanar orbits
the above conditions have a simple geometric interpretation.

It is more convenient here to shift to polar coordinates. Equa-
tion (13) for a final coast becomes

85 =X, d8*f - t<o
J g 99 H dtf
and for an initial coast, Equation (12) becomes
57 = -/\ede “+Hdt “<o0
o [

where ’\9 =hixe -Xaxi -Aixa +Aax .
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Figure 5 Figure 6

Figure 7 Figure 8
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Let w, be the angular rate of the initial orbit and Wy the angular
rate of the final orbit. Then the above conditions can be written
i < . >
Final coast (dtf 0): H/)te wf
(14)
Initial coast (dt > 0): H/)\e <w
o o

Now consider Figure 9. Here contours of constant J are plotted
against the prescribed central angle (¢) and trip time (T). These con-
tours are closed about the minimum J, or Hohmann, trajectory. The
value of J increases going outward from this point.

Along the contours, since J is constant,

6J=/\edcp—Hdt=0

P L
{Note: 6 EY- H 3t )
f f
The slope of the contours is thus given by
S0y
m = g1 = H/Ag

To interpret equations (14) geometrically consider Figure 10. The
original two-impulse contours are shown as broken lines. Straight lines
with slope W, and wys have been drawn tangent to these contours. The
solid lines represent contours of constant J when initial and final coasts
are considered. In region A, where m < w,, initial coasts represent
an improvement. In region C, where m > We, final coasts are an im-
provement,

For example, if a transfer corresponding to point P, is required,
it is cheaper to coast initially through angle A¢ (which takes time AT)
and then perform the transfer corresponding to Po .

Also note that the set of points on the ® - T plane which can be
reached for the minimum (Hohmann) cost is a wedge (cross-hatched on
the figure). Any point in this wedge can be reached by a unique com-
bination of initial and final coasts plus the 180° transfer. Other points
may need either an initial or final coast, but not both.
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Moving Interior Impulses

Consider the two three impulse segments shown in Figure 11. The
differential cost between these two trajectories can be derived from
Equations (10) and (11) and is given by

67=TA *rax -G TexNar 1-TA "+ ax S T x e ]
m m m m m m m m m m
At LAy G
= (/\m - Am) dx 4 (H' -H7)dt (15)

where the equation

(H+-H_)=-(/.\n:- ;c+-)\m'-;(') (16)

has been used. dxm and dtm in Equation (15) can be chosen independ -
ently.

The following conclusions can then be drawn
(a) If the reference trajectory is an optimum, then it is necessary that
A -X7 and HT =W

Since H is constant on any segment, it is therefore constant along
the entire trajectory,

If these two functions are continuous, then

Since '\m is aligned with the velocity impulse this last equation

becomes
A x =0
m m

or %-}:_ = 0 at impulse points.

(b) If T is not an optimum, then a neighboring trajectory with lower
cost can be found by choosing

+
dxm= -€ D‘m -)\mJ

(17)
dt_=-e[H" -u"]
m
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If € is "sufficiently small, ' then the three impulse trajectory
which passes through x., + € dx,, at t,, + € dty, will represent
an improvement over . Therefore, Equation (15) tells us how
interior impulses should be moved in position and time so as to
reduce characteristic velocity.

A Gradient Scheme for Optimum Multi-Impulse Trajectories

In this section, a technique is suggested for determining optimum
n-impulse trajectories (where n is open) starting with the two impulse,
or "Lambert, " solution (or any other nominal trajectory).

This technique is based upon two results: (1) the criterion for an
additional impulse, which tells when an additional impulse should be
added, and (2) the transversality equation as developed in Equation (15)
which tells how interior impulses should be moved.

A necessary part of this technique is a subroutine which solves
Lambert's problem; i.e., given both position and velocity at two differ -
ent times, find the trajectory which connects them. Also, it is desirable
to have a subroutine which computes the transition matrix Q(t, T)
(Equation (5)), For the inverse square field, the formulation of the
Lambert problems by Pines (Ref. 4) and the transition matrix routine
by Goodyear (Ref. 5) represent elegant answers to these needs. The
formulation of both is done in the "universal variables' and thus is valid
without modification for all conic sections.

The iteration procedure is as follows: given the position and velocity
at two terminals plus transit time, determine from the Lambert sub-
routine the two impulse trajectory which connects them. Imposing the
appropriate boundary conditions on the primer, determine the time his-
tory of p(t). If the primer magnitude appears as in Figure 2, then the
two impulse trajectory is at least a local optimum. If the primer mag-
nitude rises above 1.0, then a third impulse must be added. Let tm
indicate the time when the primer reaches a maximum. Using the
boundary conditions Sx(ty) = 0, bx(tg) = 0, it can be shown that for any
trajectory I'' passing through x(t) + 8xp

+

(v " -6v )= A bx
m m m

—. -1 _ -1
where A= Qaa(tm,tf) Qa2 (tm,tf) Qza(tm,to)Qla (tm.to)
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For maximum improvement, (5"11: - évm-) should be parallel to
Am' Therefore, assuming A is nonsingular, choose

x =e AT
m m

where € is a small constant to insure that the range of linearity is not
violated.

Two Lambert problems are then solved.
(1) Connecting (xo, to) with (xm + 6xm, tm)
. 5 .
(2) Connecting (xm + xm, tm) with (xf, tf)

If ¢ is small enough, then this three impulse trajectory will represent
an improvement. In all probability the three impulse trajectory is not
an optimum. For instance, the plot of primer magnitude vs time may
look as shown in Figure 12, In this event, after the A and H before
and after the impulses are calculated, the following corrections are
made as given by Equation (17):

dx =-€(/\+-X-)
m m m

at =-e@m -u)
m

Again two Lambert problems are calculated and the process repeated
until
lu" -5 <n

Ixtoa "<
m m
where n and ( are preassigned tolerances,

If at any point in the iteration, the primer magnitude becomes
greater than 1.0 at some point, then an additional impulse is added.
From that point on, three Lambert problems must be solved at each
iteration. The interior impulses are then moved in the same manner
as above. In principle, there is no limit to the number of impulses
which can be handled by this formulation.
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This technique, which is actually a gradient computation, exhibits
the properties of first order techniques in general: guaranteed improve-
ment on each iteration but convergence slowing as the minimum is ap-
proached.

The method is presently being programmed by the ASMAR group at
Princeton.
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SUMMARY

The following principle is exploited to obtain five linearly independent
solutions of the variational equations for Keplerian motion., The principle:
If a system of differential equations is invariant under a continuous and
differentiable group of transformations, it is possible in general, by
differentiations only, to write down a number of linearly independent
solutions of the variational equations equal to the number of independent
parameters of the group, In the Keplerian case there is, however, a removable
singularity occurring when the motion is circular,

A sixth solution of the variational equations is given by differentiation
with respect to the eccentricity e, or rather with respect to cos-le in
the elliptic case and with respect to cosh™'e in the hyperbolic case, A
more complicated function of e can be used in the parabolic case, a parabola
being thought of as the limit of a family of non parabolic conmics,

Numerous formulas and identities are written out explicitly for
manipulations in the elliptic case, A variation of the Lagrange method for
integrating non-homogeneous linear differential equations, especially adapted
for systems of second order, is developed and applied to the elliptic case of
Keplerian motion,

107



PERTURBATION OF KEPLERIAN MOTION

Finally it is shown how the Keplerian differential equations are invariant
under a group of transformations which, in general, change the eccentricity
provided that one allows the independent variable to undergo a differential
transformation.

INTRODUCTION

The purpose of this paper is to collect in as explicit a form as possible
the formulas necessary for handling the perturbation »f Kenlerian motion in
rectangular coordinates, The emphasis is on elliptic motion although brief
mention is also made of both hyperbolic and parabolic motion,

The propesed method is one of successive approximations based on the
repeated integration (by quadratures) of a series of non-homogeneous variation-
al equations, It is more explicit and automatic than the Brouwer method (Cf,
Brouwer and (lemence, Methods of Celestial !Mechanics, Academic Press 1961,
pages 398 to 414), but in other respects is much the same thing. The Brouwer
method itself contains little originality, since, for example, his method of
integrating the non-homogeneous variational equations is due in principle to
Lagrange, The merits of the present paper are therefore more in the realm of
explicitness and exposition than of originality, although it contains a number
of formulas and theorems that we have not found elsewhere,

The method of Lagmange is based on a prior knowledge of a complete set of
solutions of the homogeneous variational equations, The method of finding
these is based on a group theoretical principle which has contributed to the
title of the paper and which is explained as follows:

Consider a system of differential equations of the form
(1) x* = f(t, x) ,

where x and f are n-vectors, t is the independent variable, f 1is of
class (', and x* represents either the first or the second derivative of x
with respect to t (or, for that matter, the result of any linear homogeneous
differential operator with constant coefficients acting on x), The homogeneous
variational system based on a given solution x(t) 1is, by definition, the
system.

£ = A(Y)g ,
where A(t) is an n x n-matrix, namely the jacobian matrix of the components
of f with respect to the components of x, with x replaced by x(t). Now,
if x(t) can be imbedded in a one parameter family of solutions, say x(t, p),
in such wise that x(t, po) = x(t), it is both well known and obvious that a

solution of the variational equations is given by ¢ = (3x/3p) with p set
equal to Pye Group theory is of value in finding a way to imbed the given
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solution in a family of solutions depending on one or more parameters,
Suppose that (1) is invariant under a group of transformations whose
equations are of the form

x' =h(t, x, p), t'=P(t,x, ).
Assume that Py is the parameter value corresponding to the identity, so that
h(t, x, po) = x and P(t, x, pO) = t. Then any fixed solution of (1), gives
rise to a solution x(t, p) such that

x(P(t, x(t), p), p) = h(t, x(1), p)
a formula which will lead to an explicit expression for x(t', p) provided
that the equation t' = P(t, x(t), p) can be solved for t in terms of t'
and p, In any case, it is clear from the above identity (by setting p = po)
that x(t, po) = x(t). Several very simple examples of the utility of these
considerations are given in the next Section in connection with the variationa

equations of Keplerian motion,

I, SOLUTIONS OF THE VARIATIONAL EQUATIONS

The equations for Keplerian motion, with proper choice of the units, may
be written in the form

dzx X

L
dtz [x20y2012]3 2
&y e
dt2 [xz.yz.zzls 2
d_zi S S
dtz [x2‘y2022]3/2

The equations of variation based on a given solution of these Keplerian
equations, say, x = ¢(t), y = ¢(t), z = w(t), take the form

e 26%-90hE + 3eun + 3sur
dtz {QZ’WZ’UZ]SH
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2 22 2
d7n , BugE + (297-9"-u)n + Syuc
122 (ol aal]?)?

2 2 2 2

AL _ 3wpg + 3wyn + (2w =9~y )t
]

) [¢2‘w2’w2]s/.

We nropose, using the group-theoretical principle explained above to find a

complete set of six solutions of the variational equations based on any

solution of a one parameter family of solutions of the Keplerian equations, say
x = ¢(x, t), y = y(x, t), z = w(h, t),

where the parameter A is assumed to be independent of the group parameters,

The six solutions are exhibited as the six columns in the following 3 x 0=
matrix

¢ - (/DL $o0 e ey
Weos g - (3/2)t 4 voo-w N
w - (3/2)t © P (R

where the dots denote differentiation with respect to t,

The solution in the first column comes from what we shall call the scale
group, Namely the Keplerian cquations are invariant under the group of trans-

-3/2
3/..t

formations x' = p~lx, y! = p-ly, 2t - p-lz, t' = p in which the

identity occurs when p = 1, Thus a solution of the Keplerian equations is

x=p ¢(r, p's/zt), y = p ¥(A, p'3/2t), z ap w(h, p-z/zt). Differentiating
with respect to p and then setting p = 1, we get the elements in the first
column of the matrix W+,

The second column comes from the autonomous group, the equations for which
are x' = x, y' =y, z' =7z, t' = tep, Thus a solution of the Keplerian
equations is x = ¢(A, tep), y = (X, tep), 1z = (A, t+p). Differentiating
with respect to p and then setting p = 0 {which corresponds to the
identity of the present group), we get the elements in the second column of W*

The third, fourth, and fifth columns come from the rotation groups, For
instance the Keplerian equations are invariant under the group x' = x,
y' =y cosp-zsinp, z' =ysinp+zcosp, t'at, that is the group
of rotations about the x-axis, Thus a solution of the Keplerian equations is
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X=¢, y=ycosp-wsinp, z =y sinp + w cos p. Differentiating with
respect to p and setting p = 0, we get the third column of W*, The
fourth and fifth columns are obtained in a similar way by consideration of
rotation groups about the y- and z-axes.

finally the sixth column is certainly a solution of the variational
equations because it consists merely of the derivatives of ¢, y, and o
with respect to the parameter A,

It is known that Keplerian motion always takes place in a plane, Hence
there is no essential loss of generality in choosing the coordinate system in
such a way that the given Keplerian motion takes place in the zxy-plane, This
amounts to taking w 3 0; thus greatly simplifying the matrix W* by
annihilating five of its elements (in addition to the three elements which
are already zero)., Furthermore, it is obvious, both from the columns of W+
and from the variational equations themselves, that with w = 0, the
variational system splits into two systems one involving only § and n and
the other involving only ¢. The second of these systems is relatively trivial,
and hence from this point on we confine most of our attention to the first of
these systems, namely the system

& | (26%-69)e + 3oun
2 2 2)5 2

at (6%%0
@
& | sewg + (29%-6%0n
dt2 (¢2'W2)S/2

where ¢ and y¢ satisfy the two dimensional Keplerian equations,

N Ly
3) ¢ = » yo=
(2 (2D

The most general elliptic case can be obtained (by the operation of a
scale transformation, a rotation, and a translation of t) from the following
one-parameter family of solutions:

¢ = - cOS A + cOS B
(4)

v = sin A sin @
where 8 1is to be regarded as a function of t through the Kepler equation
(5) t =g - cos A sin @,

An elementary calculation shows that (3) is satisfied by (4) and (5). The
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quantity 6 is known as the eccentric anomaly, The eccentricity of the orbit
is cos A, at least, if 0 < x g 7m/2,

Similarly the hyperbolic case can be handled by taking
¢ = - cosh X + cosh @
¢ ®» sinh A sinh @

where 6 1is defined as a function of t by the equation

t = cosh XA sinh 6 -« 6,

The most general paraboliccase can be treated by taking
423000
v =0

where 0 1is defined as a function of t by means of the equation
1 1 3
tl?(a-go).

The parabolic case differs from the other two, hecause all parabolas are
obtainable from this one standard parabola by the operation of the three
groups, There is no parameter X, independent of the group parameters,
enabling us to write the last column of the matrix W*, This situation can be
rectified by finding a family of conics consisting of ellipses and/®r hyper-
bolas which, as the parameter X of the family tends to a certain value, say,
0, converges to our standard parabola., Such a family of ellipses converging
to our parabola as A + 0 is the following:

¢ = - cot A csc x + csc2 A cos(6 sin i)
Y = ¢s¢ A sin(0 sin ))

27
t =8 csc” A - cot A csc2 A sin(0 sin A) .

It is not within the scope of this paper to discuss any further either the
parabolic or hyperbolic orbits,

IT, MISCELLANEOUS FORMULAS FOR ELLIPTIC MOTION

We restrict most of our attention to the elliptic case, Since we are
also restricting attention to the planar case, the equations of variation will
have only four linearly independent solutions. They are exhibited as the four
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columns in the following 2 x 4-matrix,

(6) W

This matrix is, of course, derivable from the matrix W+
row and the third and fourth columns,
for these solutions, it must be remembered that o
We readily find from (5) that

of both t and 1,
(N

and

(8)

] -y

o

¢ - (3/D)t 4

WAJ

v 3/t ¢

by omitting the last
in writing down the explicit expressions
is regarded as a function

1 S
at 1 - cos X\ cos 8
36 - sin A sin @

A 1 - cos A coz 6

Thus, we find from (4) that

9 $(t)
(10) vt
(11) NO)
(12) v, (1)

- sin 6

- sin 8(30/3t) = oS

: sin A cos &
+ sin A cos 6 (38/3t) = T —cos 7 cos 5

sin A sin2 [:]

sin XA - sin 6 (36/3A) = sin A + T —cos T 555

cos A sin 6 + sin A cos 6 (38/31)

sinzx cos 6 sin 8

€os X 8in 6 - T m T cos ©

These formulas are sufficient to enable us to write down at once all the

elements of W,

It will also be necessary for us to have
of W with respect to

W, the derivative

t. For this purpose we record the following formulas

obtained by differentiating formulas (9)-(10) with respect to t.

(13)

- COS A - cos 6
o(r) = = 5
(1 - cos x cos 8)
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- sin A sin 6

(14) W(t) = 3
(1 - cos X cos 6)

Before differentiating °A and wx it is convenient first to observe

that they may also be expressed in the forms

(1) ¢,(t) = sin X - $(t) ¥(¥)

(16) ¥, (£) = cos A sin 6 - y(t) ¥(t)
lence

@n 8, () = - 3(1) V() = (2] V() .

To find &A(t) first note from (4) that

2 2 2
(18) $" + y° = (1 -« cos A cos 8)
Differentiating this, we get

¢$ + w& = (1 - cos A cos D)(cos) sin 8)(36/3t) = cos A sin 8

So (16) may be written

(19) U (8) = 0b + wb - Vb = ¢b
Hence

. o2 .
(20 ¥ (8) = 85 . 0d

The ¢ and ¥ may always be eliminated with the help of (3).

Some other formulas worth noting and easily derivable from the preceding
are the following

(21) 0(8)0, (1) *+ $(t)v,(t) = o(t) sin X

(22) S(t)P(t) = $(t)y(t) = sin A

(23) —Z_L'Z—_ﬂ? -(&2‘&2)51.
ICRIE S
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If we write the variational system (2) as a system of four linear
differential equations of the first order

%E-: 0g+0n+1E+0n
%%g ogoonooé¢1r.1
.3%. Agoanooiooﬁ
%% = CE+Dn+o E +0 5
where A,% ’ B'+C'%—577 and D’%'
(67 »y)'" (67 + v7) (67 + v7)

it is seen at once that the trace of the matrix of coefficients on the right

ic zero, Hence, by a known theorem on linear differential equations, we know

that the determinant of the matrix (W\ is a constant, It can therefore be
.

W,

evaluated in a simple manner by evaluating it at t = 0, From the above
formulas it is easy to write down the following matrix,

1 - cos A 0 0 sin A 7
sin A
poi-LL A - X
W(0) 0 T - cosi 1y cos 0
(24) . -
W(0) 1 sin A
- 0 (l-cosk)z 1 = cos A 0
1 .sin A - 1
- (— s [0 —
| 2(1-cos)\,) v ) 1- cos A
Evidently
: sin A
W(0) 1 -cos A sin X I-cosn 1 - cos X
det , = .
#(0) - l( sin A ) -1 -1 - sin A
2 1-cosi l-cosi (l-cosA)z (1-cos))

= [-(1/2)(l-cosA)][-cosA(l-cosA)'I] =+ 271 cos A,
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This shows that our four solutions are not linearly independent if \ = m/2,
In fact this begomes obvious anyway; for, with X = 1n/2, 86 = t, ¢(t) = cos t,
v(t) = sin t, ¢(t) = - ¢(t), ¢(t) = ¢(t), so that the second and third
colums of W are identical, The case A = w/2 is the case of zero
eccentricity, corresponding to circular motion. The singularity occurring at
A = n/2 is, however, easily removable, in accordance with the following
theorem,

Theorem 1, The variational equations admit the solution

o+ v V-4
Y N = Tos x

and this solution has a removable singularity at X = n/2,

Proof, The first statement is an obvious consequence of the fact that the
(E,n ) of the theorem is a linear combination of the second and third columns
of the matrix W of (6).

As for the second statement, we find by an elementary calculation based
on (4), (9), and (10) that

£ = $r v, 1 - sin 8

. si .
cos A cos X [1 - cosk cosH sin) sing]

-sin® ¢ sin) sin® - sin) cos\ sin® cosd
(1 - cosh cosf)cos A

¢ - sin 6 \(1 - sinA) _ sink sin® cos8
1 - cosx cos8’ " cos X (1 - cos\ cos6)

) 1 [ sin) cos®
Cos A cos A 1 - cosi cos®

- (- cosi + cosf)])

Sin) cosB - COSH + COSA + COSA COSZO - COSZX Ccosf

(1 - cos)k cosB)cosr

( cos 6 ‘(1 - sinx) . (1 + cosze - COSA COs6,
1 - cos) cos6’* cos A 1 - cosi cosé® ’
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. l-sin) cos . .
Now s C Ty 0 as 1 -+ n/2, We also have 6 » t, lence in the

limit as A - n/2, we have
. 1 .
£ ==-sint cos t = - > sin 2t

n=1¢coszt=%+%c052t.

It is readily verified that these equations satisfy the variational
equations when ¢ = cos t and ¢ = sin t. They afford a solution which may
be used to replace either the second or third column of W to preserve a
complete set of linearly independent solutions in the case X = 1/2,

The inverse of the matrix in (24) is important for future purposes, It
was calculated in the usual routine way, and we record the result here,

2 2sini
——— 0 0 AL,
(l-cosA)z l-cosA
2
0 tan A (-cos\)” 0
cos A
-1
w(o
29 .( ) -
W(0)
0 -1 - tan A 0
(locosxicosx
-sin AZ 0 0 -2
L (l-cos)) ]

IIT., APPLICATION OF NON-HOMOGENEQOUS LINEAR EQUATIONS
TO THE PERTURBATION OF ELLIPTIC MOTION

Perturbation of Keplerian elliptic motion generally requires the
solution of a non-linear system, which, with suitable choice of coordinates,
may be put in the form of the following three equations,

2 2
(26) d_g.ﬁé_‘%%_-"m,f
dt [6° + ¥7]
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an _ 3ewe s (297 - D)n
(27 Vi T 735/7 " F
de {07 + v
2
(28) L N

in which the non-linearities in ¢, n, and ¢ occur only in f, g, and h

and are small compared to the linear terms, Solutions are required to satisfy
given initial conditions or more complicated boundary conditions. A useful
method is that of successive approximations in which an approximate solution
is inserted for f, n, ¢ in f, g, h, which accordingly are temporarily
regarded as known functions of t, e then are apt to get a better approxima-
tion by integrating the resulting non-homogeneous linear system, and then the
process is repeated, The process, when infinitely repeated, converges to an
exact solution under suitable conditions. In this paper, however, we are not
concerned with convergence questions, but rather with efficient methods for
solving the non-homogencous linear system consisting of (26), (27), and (28)
when f, g, and h are regarded as known functions of t,

Notice that (28) can be solved independently of (26) and (27), Indeed
it admits the general solution

t
(29) ¢ = ag(t) + by(t) + csc A [ [$(t)s(s) - ¢(tIw(s)]h(s)ds ,
0

where a and b are constants of integration, The reader may verify this
statement a posteriori with the help of (3) and (22).

We wish to get a similar result for (26) and (27), which are not
decoupled, In the next scction we develop a general theory of non-homogenecus
linear systems consisting of n second order differential equations., When
n = 1, this theory leads to thc trivial result (29), When n = 2, it yields
the not so trivial analogous result for the system consisting of (26) and {27.

IV, A MODIFICATION OF LAGRANGL'S THEQRY
QOF VARIATION OF PARAMETERS

We wish to develop here a modification of the formula of Lagrange for
solving a non-homogeneous system of linear differential equations in terms of
a complete set of solutions of the corresponding homogencous system. This
formula is commonly referred to as the "Lagrange variation of parameters”
formula, We wish to present a version which can be applied directly to a
system of n equations of the second order in n unknowns without the
necessity of rewriting the system as one of 2n equations of the first order
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in 2n unknowns, The system of interest in our immediate applications is of
the form

dzx
(30) —= = A(t)x + £(t)

dt”
where x 1is an n-vector whose components are the n unknown functions,
A(t) is an n x n-matrix whose elements are known continuous functions of the
independent variable t, and f is an n-vector whose components are known
continuous functions of t. It became evident however that the more general
equation (35) below could be treated equally well, The n x n-matrix B(t)
will be assumed to be of class (',

Theorem 2, Suppose that 0(t, s} is an n x n-matrix whose elements are
——— ] :

functions of class (" of the two variables t and s. Suppose furthermore
that

(31) (t, s) = A(T)O(t, 5) + B(D)O(t, s) ,
(32) o(s, s) = 0
(33) é(s, s) = I, the n x n-identity matrix,
and let

t
(34) x(t) = [ @(t, s)f(s)ds .

t

0
Then
(35) X(t) = A(t)x(t) + B(t)x(t) + f(t)
(36) x(to) =
(37) X(ty) =0,

where the dot on O represents differentiation with respect to its first
argument and the dot on x(t) denotes differentiation with respect to t,

Proof, Evidently (36) follows at once from (34), Differentiating (34)
we have

t

X(t) = [ A(r, 5) £(s)ds + 0(t, t)F(L),
. §
0

Because of (32) this reduces to
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t
(38) x(t) = [ d(t, s)E(s)ds .
o
and then (37) is seen to hold, Now differentiating (38), we get

t
X(t) = [ B(t, s)f(s)ds + 8(t, t)E(L) .
to
Hence from (31) and (33), we get
t

X(t) = [ [A(t)o(t, s) + B(t)O(t, s))f(s)ds + £(t) .

to

This can also be written

t t
x(t) = A(t) | o(t, s)f(s)ds + B(t) f o(t, s)f(s)ds + f(t).
% o
Hence from (34) and {38) we see that (35) must hold,

The existence and uniqueness of the matrix ©(t, s), with the properties
described in the hypothesis of the above theorem, are self evident from the
existence, uniquen~ss, and continuity theorems for linear differential
equations, It may be calculated from any n x 2n-matrix solution X of the
equation
(39) X(t) = A(t)X(t) + B(t)X(t) ,

provided that

X
(40) det |, J# 0.
X

Since the columns of 0O(t, s) are solutions of X = A(t)x + B(t)i,
they must be linear combinations of the 2n columns of X(t), with
coefficients which are functions of s, This amounts to saying that there
exists an n x 2n-matrix Y(s), such that
(41) a(t, s) = X()Y'(s) (Y' = transpose of Y) .
Y(s) is now determined by (32) and (33), which may also be written
(42) X(t)Y'(t) = 0O

(43) X(t)Ye(r) = 1,
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which last two equations, because of (40), are just sufficient for the
determination of Y,

Theorem 3, The matrix Y(t) described above satisfies the system
(44) Y(t) = (A'(2) - Br(t)Y(r) - BU(DY(Y) .
Proof, Differentiating (42), we obtain
(45) XYt + x¥r =0
Hence from (43), we have
} (46) (1) Xy' =1 and (ii) XY' = -1,
Differentiating (46i) and using (39), we have
an [AX + BX]Y' « X¥' =0 ,
Since XY' = 0 and XY' = I, we find from (47) that
(48) X¥* = -8 .
Differentiating this last relation and again using (39), we have
(49) [AX + BX]Y* « X¥* = - 8
But, since by (46) X¥' = = I and by (48) X' = - B, we find that (49)
becomes - A - 82 e k¥t = - 8 so that
(50) I W LI )
Multiplying (46i) on the right by A - B we have
(s1) XY'(a-B8) =A-8,
while from (48) we have
(52) K = - 8%,
Subtracting (51) from (50) and adding (52) we get
(53) (¥t - Y'(a-B) « ¥'B] =0

Differentiating (46ii), we have o+ Xt - 0, so that it follows
from (48) that

(54) XYt = B ,

|
|
|
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We multiply (42) on the right by (A - 8) thus obtaining
(55) XY'(A - B) = 0,
Using, once again, (46ii), mgltiplying on the right by B, we see that
(56) XV'B = - B,
Adding (54) and (56) and subtracting (55), we obtain
57 X[Y* - Yr(a-B) » ¥'B] =0,
It follows from (40), (53), and (57) that
¥' - Yt(A-B) +¥Y'Ba=o,

Hence, taking the transpose, Y - (A* - ﬁ')Y + B'Y = 0, which is obviously
equivalent to (44), as we wished to prove,

The system (35) is said to be self-adjoint if
(58) A'(t) - B' = A(t) and B'(t) = - B(T) .

In the self adjoint case Y(t) and X(t) satisfy the same differential
system, namely (39),

Theorem 4, Y(t) satisfies the initial conditions

X(0)Y'(0) = 0 X(O)Y'(0) = - I
(59) R . .
X(0)Y'(0) = 1 X(0)Y'(0) = - B(O) ,

and, since (40) holds, Y(t) 1is uniquely determined by (59) and (44).

Proof, We get (59) from (42), (46), and (48), by setting t = 0., Because
of (40) with t = 0, the initial values of Y and Y are uniquely
detexmined by (59), and Theorem 4 follows from existence and uniqueness
theorems for differential equationms,

X(t) 0 -1
Theorem 5, Let L(t) =| and J = where BO = B(0). Then, if
X{(t) I ”BO

the system is self adjoint, Y(t) may be found from the formula

1

- . -1
(60) Y = xe) LTt T, L e L.

and
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-1 -1, . 1
0 J(LO ) X(s)

Proof, let H = [?]; so that H' = (Y', ?'), H, L. and J are all 2n x 2n-
Y

(61) o(t, s) = X(t) L

matrices, Conditions {59) may Le written in the abbreviated form

) LI
(62) Loty =
where the subscript ( means that the matrix in question is evaluated for
t = 0, Since the system is self-adjoint, we seec from (44) and (58) that
Y(t) = A(t)Y(t) + B(t)Y(t), From (39) it follovs that the columns of Y

must be lincar combinations of the colurns of X. In other words there exists
a 2n x 2n-matrix Q of constants such that

(63) Y(t) = X(t)Q

and hence ?(t) = i(t)Q. The last two written equations may be written more
briefly as H(T) = L(t)Q. In particular, on setting t = 0, we have

“0 = LOQ.

Therefore Q = LO-1 “O' Inserting this into (63), we find that
Y(t) = X(t)l.o‘1 “0' while from (62) we have H'O = LU'l J. Hence

“0 = J'(Lo-l)'. On inserting this expression for “0 in the last formula
for Y(t), we see that (60) has been proved, And (61) now follows from (60)
and (41),

In order to apply Theorem 5 to the system (30), we take B(t) = S0
that the condition (58) for self adjointness reduces to the requxrement that
A(t) be symmetric, It actually is symmetric not only in the case of the
variational equations of Keplerian motion but also in the case of the
variational equations connected with any solution of a conservative holonomic
dynamical svstem, In fact the matrix A in such a case is merely the
negative of the Hessian matrix of the potential function with the given
solution inserted, assuming that the coordinates are ,chosen in such a manner
that the kinetic energy is given in the forn (1/2)(x . x)

V., THE O-MATRIX FOR ELLIPTIC MOTION
We now proceed to the consideration of the example alluded to at the end

of Section III, restricting attention to the elliptic case, The matrix X of
Section IV is now, in this special case, to be represented by the matrix W
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of Section II., Hence the matrix L(0) 1is the matrix | W (0)]| and the inverse
o)

L(U)-1 is accordingly the matrix of formula (25). Using this and various
other formulas of Section II, the four elements of the matrix Q(t, s) were
calculated from the formula (61). We give only a brief outline of the tedicus
but straight forward calculation by mentioning only the following three inter-
mediate formulas, First, by carrying out the indicated matrix multiplicatios,
we have

0 +*2 0 0
- - -2
L(0) 1 J(L(O) 1), . 0 0 tani
Q 0 0 -sech
0 -tani seci [\l

Secondly by using the identities of Section II, it is not difficult to
establish the two following identities:

Y sech + & tan) = - w& CsSC A

L tank - ¢ seck = 1 + @@ csc A,

which are useful to eliminate the singularity at i = n/2,

Let Oiw(t‘ s) be thec element in the iﬁﬂ row and jth  column of

a(t, s). Then ve present our final results in the form:

6,,(,5)=3(s-1)$(£)4 () +2[0(£)3(8)-4(1)6(s) ]-[W ()b ()6, (s)-¥(s)¥(s)4, (1) Jese A

8,,(t,5) ® 3(s-)U(8)é(s) + 2[v(t)a(s) - $(t)o(s)]

+ [8(0)()0,(s) + w(s)¥(s)v, (1)) esc & + ¢, (s)

0,,(8,8) = 3(5-0)4(1)d(s) + 2[a(V)V(s) - (t)u(s)]

- (W04, (s) + 6()U(s)e, (1)) esc & - ¢, (1)
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8,,(t,8) = 3(s=t)P(t)i(s) + 2[V(t)d(s) - ¥(D)v(s)]

+ [o() ()4, (5) - 4()V(s)¥, ()] ese A + [y, (s) - v,(8)] .

VI, ECCENTRICITY CHANGING TRANSFORMATIONS

In Section I we used the fact that the Keplerian differential equations
were invariant under the scale, autonomous, and rotation transformation groups,
These make it possible to pass from any trajectory to any other trajectory
with the same eccentricity. The question naturally arises as to whether the
equations are also invariant under a transformation group enabling a passage
from any trajectory to another trajectory with different eccentricity. The
answer appears to be in the affirmative provided that we allow a differential
transformation on the time t instead of the simple transformation of the
form t' = P(t, x) as indicated in the introduction. This proviso causes
difficulty in the use of such transformations, but nevertheless we present
the theory in the hope that an application for it may be found at some future
time, .

Because of the rotation groups it is obviously permissible to confine
attention to the planar problem, and indeed to orbits whose major axes lie
along the x-axis of coordinates, We thus find it sufficient to consider the
transformation T(a, b), depending on the parameters a and b, defined
by the equations,

2 2

C-x/az’h oa/x2¢y
(64)

n=by b¢ o0,

These transformations are easily seen to form a commutative group, since

T(0, 1) is the identity transformation, and since T(a, 5! = T(- ab"?,b™}),

and T(a, b) T(a, 8) = T(a va® » 82 + a /2’ + b%, bg).

These transformations all leave the origin invariant, They also leave
the x-axis invariant. But, it is possible to pass from any point (x, y)
with y # 0 to any other point (£, n) with n # 0, We have only to take

2 2 2 2
(65) poffE ey o xfe on
4

<3

It is also possible to pass from any point (x, 0) with x # 0 to any other
point (£, 0), with ¢ ¥ 0 and sgn £ = sgn x,
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Since it is proved easily from (64) that

(66) % 52 + nZ = /(n2 + hz)(x2 + yz) +  ax

1
a V-
it is seen (with a # 0) that the cllipse with eccentricity |a|(a” + b*)™ 7,

. ; : -1 . : .
focus at the origin, and directrix x = a °, 1is carried by the transformation

2 2
into the unit circle £° + n° = 1, It can be seen further, restricting
attention to conics with focus at the origin and dircctrices parallel to the

. ; A L . : . -1
y-axis, that a conic with cccentricity e is carried over by T(a, b) inte
a conic with eccentricity

v/ at PRI ae

It follows that ellipses are carried inte ellipses, parabolas into parabolas,
and hyperbonlas into hynerbolas. Lxcept in the case of the narabola the
eccentricity is alwavs changed by any transformation of the groun for which
a # 0, Any ellipse can be carricd into any other ellipse, any parabola into
any other paribola, and any hyperbola into any other hyperbola, That the
transformation carries any conic with focus at the oripin (but with directrix
not nccessarily parallel to the y-axis) into another conic with focus at the
origin is more difficult to see; but it is onc of the conclusions that can be
drawn from the following discussion of the Keplerian ditferential equations,

We now examine the effect of the transformation (64), where a and D
are reparded as constants while x = x{(t) and y = y(t) are functions

satisfying the Keplerian equations X = = x r-s, ; = -y r-a, where

2 2 2 - .
r“ = x“ ¢+ y", Thus ¢ and n are also to be regarded as functions of t.

2 2 2
We also introduce p“ = £ + n° and another variable o defined uniquely by
the requirements that do/dt = p/r and that o = 0 when t =0, Thus o
is a function of t, but we can also solve for t 1in terms of o and use
the latter for the independent variable, In this way & and n can be
regarded as functions of o and we write §' « dg/do = (d§/dt)(r/o), with
similar formulas for n, We wish to find differential equations (similar to
the Keplerian Jifferential equations) to be satisfied by £(o) and n(9).

It is known that xy - xy = ¢ is independent of t (and hence also of
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o). This is also true of ey - x rl oA and ck ey r1-s,

A straight forward calculation shows that the quantity y =gn' - £'n is
also independent of t (and hence of o). In fact it shows that vy = bc,

2 2)1/2

Still further, if we introduce the quantities, Q = (a~ + b - aA
] { X s

Yy
MebB, and N = A(a2 . b‘)l/z, all of which are independent of t and o,

our straipght forward calculation shows that yg' + Qno'l = M and

yn' - Qt;o'l = N. Multiplving the first of these two equetions by n and the
second by ¢, we find after a subtraction that vy(&1' - &§'n) = Qo + N§ - Mn,

tlence y2 - Qp = Ng - M, It is also easy to prove that

Gt e m?d ol o) 20 e -y« QP

cof o) e 27?0y ¢

2
VI SN I

= |
o]

Thus we have established the following two relations
gn' - g'n = be

PTG TR e te ol e - A .

If we now differentiate these two equations with respect to o and solve for

the second derivatives £" and n", we find that §" = - Qgc's,

n" o= - Qno's. Since 7 is a constant, these equations are already in
Keplerian form; so that it is clear that the point (£(s), n{c)) describes
an orbit which must be a conic section, and, if it is a non-degenerate conic,
one focus must be at the origin.

Nevertheless Q need not be unity. llence in order to achieve the

. R . . - -3 - -3

invariance of the original equations x = - x T -, ¥y = - ¥ r ~, we make

another modification of the independent variable, Let 1 be defined in such

/2
’

wise that dr/do = Q1 with T =0 when o =0, Then using T as the
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o

- 2 2 -3
independent variable, we find that d’£/dt’ = - £0°> and d°n/dt® = = no"S,
where the relation between 1 and t is evidently

dv _p 1/2 o 2 2.1/2 1/2
T-~7 0 =< [(a" + 1) - aA]

Although A is a constant of the motion, it may change from one motion to
another, llence it has to be considered as an abbreviation for

(xy = xy)y - x(x" + y9)=1/2,

We conclude therefore that there exists a function u(x, vy, i, }, a, b)
such that the transformation

£ = x val « b° . a /x% e y2

n=by b #0

dt/dt = U(x, y, X, ¥, a, b)

. 2.-
transforms the Keplerian differential system Xx = - x(x2 . y") 3/2,

2,-3/2

y o= - y(x2 +y7) into the Keplerian system,

\
a%e . _ & dn . n_
27 I T2 3"
dr 0 dr p

There is a question sbout the sign of the quantity Q; for, if it is

negative, our change in the time variable through dt/do = 01/2 would be
1nag1nary. We have not investigated this situation, except to note that Q
is necessarily positive when the motion (x(t), y(t)) is either elliptic or
parabolic, For it is well known that the constants A and B, introduced
above, are related to the eccentricity e through the equation

e2 = AZ + B2 .

llence [A] < e <1 in either the elliptic or parabolic case, and since we
must always take b # 0, we sec immediately that

Q=@ +bHY2 Cans a0,
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SUMMARY

A new proof of the Sundman inequality with refinements, and its utility in
the introduction of a monotonically increasing angular variable for the
Lagrangian inertial radius in the n-body problem, A discussion of the possiblk
amount of information derivable from these considerations by studying them in
the light of the integrable two-body problem,

INTRODUCTION

In this paper we give a proof of the well known Sundman inequality which
is far superior in generality, precision, and elegance to any which we have
hitherto seen, The additional terms to be introduced in order to turn the
inequality into an equality are explicitly exhibited in a reasonably simple
form, Thus, by including some or all of these terms, we achieve the superior
precision noted above, All these results are based on some simple theorems in
the field of classical vector analysis. In fact the essence of the Sundman
inequality appears in a more general setting than that of the n-body problem,

The last sentence needs to be emphasized despite the fact that the only
applications of the inequality have been to the theory of the n-body problem,
and despite also the fact that in this very paper we have ventured (through the
Sundman inequality) a further modest contribution to this theory, Namely we
have shown how to introduce a monotonically increasing "angular" variable 6(t)
with certain interesting properties, Upon setting X = R cos 6 and
Y = R sin 8, where R is the Lagrangian inertial radius, we investigate
differential equations to be satisfied b; X and Y, These equations are
shown to contain enough information essentially to solve the problem completely
when n = 2, Naturally the situation for n > 2 is very different, since the
more complicated cases need much more information for their complete solution,
But it may be reasonably hoped that the same information which solves the two-
body problem completely may at least yield some interesting qualitative results
for the n-body problem,.
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I. PRELIMINARY THEOREMS IN VECTOR ANALYSIS

In the sequel the inner or scalar product of two 3-vectors a and b is
denoted either by (ab), without a dot, or by a ¢ b, without the parentheses,
The outer or vector product will be denoted by (a x b),

Theorem 1. Let a, b, ¢, d be any four vectors in three dirensional space.
Then the scalar W(a, b, ¢, d}) = (aa)(dd) - 2(ac)(bd) - 2(ab)(cd) + 2(ad)(bc) +
(bb) (cc) 1is not negative,

Proof. The theorem is certainly true if d = 0; for then W a (bb)(cc) 2 0.
lience we may fix attention on the case d # 0, Then, regarding b, ¢, and
as constant vectors, we seck to minimize W by varying a. Evidently the
gradient of W with respect to the components of a is the vector

aW/3a = 2a(dd) - 2¢(bd) - 2b(cd) + 2d(bc) ,

while the hessian matrix of W with respect to the components of a is the
positive definite matrix, 2(dd)I, where I 1is the 3x3 identity matrix. It
follows that W assumes its minimum value when a 1is such that it makes the
gradiant of ¥ vanish, namely, when

a = (dd)7! [b(cd) + c(bd) - d(be)] .

1f we substitute this expression for a in the formula for U, we find by a
routine calculation that the minimum value of W turns out to be

(bb)  (be)  (bd)
W) (b (co)  (ed)

(db) (de) (dd)

We have here the determinant of a certain type of symmetric matrix which is well
known to be positive if the vectors b, ¢, and d are linearlv independent
and, otherwise, it is positive semi-definite, Cf, Hardy, Littlewood, and
Polya, Inequalities, Cambridge University Press (1934), p, 16, In either case,
the minimum value of the determinant (and hence of W) must be non-negative
and thus the theorem is proved,

Theorem 2, Let up, u sssg U be n vectors in ordinary three dimensional

2! n
space and let Vie Vou eeey v be another set of n vectors. Then the

following formula is identically satisfied
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n 2 n

n n n n
1 .
(iil(uiui)(iil(vivi)-(ifl(uivi)) -(izl(uixvi))-(ifl(uixvi))=7i.§=lh(ui,uj,vi,v?

where the W function is defined by the formula of Theorem 1

Proof, Evidently the left member of the last formula may be written in the
form
n
I sud(veve) - (uovi(u.v.) - (u, x v,) « (u, x v,
. (G (vyvy) - (uyvRlugvy) = (ug xvp) » (ug x v)))

By a known formula of vector analysis, we know that
i i

(u; x v,) » (uj x Vj) = (uiuj)(vivj) - (uivj)(viuj) ,

while a simple manipulation of the summation indices i and j shows that

n n 1 1
T U ) (v,v.) = L = (u.u,)v.v.) + = (u.u.)v.v,
.. (uu;) (Vv4) N (uu (v )+ 5 (a0 v

Hence the left member of our formula can be transformed into
n 1 1
. §-1[5(uiug(vjvj) - (uivi)(ujvj) - (“i“j)("x"j) + (uivj)(ujvi) + -Z-(ujuj)(vivi)]
’
which, by the formula for W, given in Theorem 1, can be written
T
T = W(u,, u,, v., v.)
i,j=1 oo
and this finishes the proof,

As a corollary to Theorem 1 and 2, we obtain the inequality

n n n 2 n n
(1) ( Xltuiui))( E{vivydd 2 (2 (uyvy)) + (2 (ug xv)) e (L (uy x vi))
i= i= 1 i

i=1 j= i=l i=1
no matter what the vectors Ups eons Upy Vi, eue, v may be,
Theorem 3, The scalar W(a, b, ¢, d) of Theorem 1 vanishes whenever the

vectors ¢ and d are proportional to the vectors a and b, in the sense
that there exists a scalar k such that b = ka and d = ke,
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The proof of this theorem is left to the reader since it is an almost
obvious consequence of the formula for W(a, b, ¢, d),

II. THE SUNDMAN INEQUALITY

In the application to the n-body problem with the n masses My By ey
m, we let the position of the mass m at time t be determined relative to
a given coordinate frame by the position vector T, with components Xis YinZp

The velocity of m is then ;i with components ii’ §i' z the dot

it

denoting differentiation with respect to t, The Lagrange inertial radius R
is defined by

N n
5 2
(2) R" - 't mi(riri) .
i=l
The kinetic energy T is given by

1 " « .
(3) Ts= 7 ifl mi(riri) .

The angular momentum vector ¢ is evidently
(4) $= I m(r, xr,).

Also, by differentiating (2) we have

n

(5) RR = 151 mi(riri) .
If now we let u, = m.l/zr. and v, = m M2 T., we see that (2), (3}, (4) and
i i i i i i
(5) become
n
R = I (u.u)
- i
i=]
n
M= 1 (vv))
i=1
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=]

,
RR = .E (uivi)
i=]

Thus, substituting in our inequality (1), we obtain one form of the famous
Sundman inequality, namely,

(6) RPT > R e (o v 8) .

We may also write this in the form
©) 8. f__%il = 2T
R
1/2 . ; .
where f = (¢ + ¢) is the magnitude of the angular momentum and Q is a

positive scalar, Actually, by using the identity of Theorem 2 instead of the
inequality (1), we easily derive the following explicit formula for Q

1 n
Q= W(u., u., v., v.)
S
(8)
n
! wie 172 1/2 1/2 1/2 .
Vi . ?-1 .\(mi Tis mj rJ., m T, mj rj)
’

So far we have made no use of the equations of motion for the n-body
problem, The Sundman formulas (6) and (7), with Q defined by (8), hold for
any system of n masses moving around in space with arbitrary velocities, As
a consequence of the equations of motion, we know that we have ten first
integrals, from which it follows that

9) f = constant

and that there exists a constant K (the negative of the energy constant) such
that

2.2

(10) d§¢2K-2T.
dt

This last relation is one form of the well known Lagrange identity, On using
(10) to eliminate the T in (7), we obtain
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(an 2 o 2Ri » 2k 5 £2R77,

which is the form of Sundman's inequality used in our previous report entitled

Rejection to Infinity in the Problem of Three Bodies when the Total Energy is
Negative,

I1I, AN ANGULAR VARIARLE FOR R
It is convenient to write (7) in the form
«? Y
(12) Re e B2 27

2 2 .
where pz = f° +« Q> £f°, We then define a monotonically increasing function

8(t) by means of

t nd
(13) () = 8, + [ p(s) R(s) “ds
0
where 90 is an arbitrary constant., Hence R(t) é(t) = p(t) R(t)’1 so that
(12) becomes
02 2 2
(14) R® + R 0 = 2T
while, of course, we also have
(15) RZ8wp2fso
Now let
X(t) = R cos &
(16)

Y(t) = P sin 8

Then we easily find that

X2 * Y2 - Pz
. . 2 2
an ey e er? et

D
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Hence
1 22 &2 .
(18) E‘LX +Y)=T and XY -XY=p,
From (10} and (12), we have
2.2
B2 pir? L 4R o,
dt

where h = =K is the encrgy constant, From this we find that
2 .
d «2 P - 2pP
——dt(RR-ZhR‘»R) .
Integrating we get

. i
RRZ - 2h R+ p? R7Y w c(u)

where
t2 2 -1 t -1 .
c(t) = RyRS - 2hRy ¢ py° Ry + [ 2R(s)"7 p(s) p(s)ds .
0

From (15) we now obtain

(19a) ix.?i=-§57~1’—22
R
(18b) ~YXeXy=p,

. -1 .
In deriving (19a) we, of course, use the obvious fact that c= 2R p n. We

now solve (19) for X and Y, wusing the fact, derived from (17) that
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Rt = X ¢ + YY, In this manner we obtain the pair of equations

-u X Xp ﬁ L
pY

X = . -
RSk wR
(20)
. o BX
R LR
R R” R R R
W
here ) 2 . )
Y 1 s 2 0 p(s) p(s)
w=zess [RORS - hR e T, ]+ J’O OB

Thus, if ﬁ is small relative to R and R, then X and Y very nearly
satisfy the equations for Keplerian motion,

We now show that the information contained in (20), in the case of the two
body problem, is equivalent to the reduction of the latter to Keplerian motion.

Taking the origin at the center of gravity of the system, we have

(21) mry + myr, = 0, mr o+ mr, = 0,

1/2 » 1/2 « :
lience the vectors m T, and n, r, are proportional to the vectors
m11/2 T and m,l/z . Hence from Theorem 3 and equation (8) we see that

Q = 0; and therefore p = f, which is a constant. lence equations (2) reduce
to

. u X .
(22) S M e~ o
R R
where u is the constant
1 2 2 2, -1
" =?[RUR0 - 2h R0¢ f I\O 1.

So far, we know only that u is a constant along each motion; but it might
differ for differcnt motions, We show now, however, that the latter is not the
case, Indeed, we can show that u is a simple function of m and m, only.
To this end we write

- 2h] ,
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dropping the subscript 0, which is not important, since the right hand member
of the last written equation is almost obviously a constant along each motion.

Now by (15) we have f Rl P e g 8, so that

It now follows from (17) that u = R(T - h), Since h is the total energy of
the system, h - T must be the potential energy of the system, which is, of

-1

course, - mmp °, where p 1is the distance between mn and my. It follows
that
(23) ywmm Rp™ !

172

By definition of R and by (21) we have

(24) RZ my |r1|2 +m, |r2|2 = lrllz (my/m)(my + my) .
Similarly
(25) o= ryl e Iyl = eyl w7t (my e m)
Hence, from (23), we have
w33 1/2
1 2

If we orient our coordinate frame of reference so that the positive z-axis
has the direction of the angular momentum vector, the motion takes place in the
xy~-plane and we obtain the equations

(my + m)e {my *+ m}n

3 s M= 3
P P

(26) €= -

for the relative motion of the two bodies, where £ and n are the coordinates

2.1/2
n

of n (say) relative to m The ratio of o = (52 + ) to R 1is seen

1 2°

1/2 1/2 : R
from (24) and (25) to be (m1 + m2) /(mlmz) . By a discussion of the angular
momentum it may be shown that tan-l(nlg) - 0 is a constant; and it is also not
hard to prove that, if the axes are oriented so that this constant is zero, then

the ratio £ to X (and of n to Y ) must be a constant and eoual te the
ratio of p to R, It is then easy to see that (22) and (26) are equivalent,
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SUMMARY

The intuitive aspects of approximate decoupling of an n-body problem as
exemplified in the solar system. Formalization of approximate decoupling in
terms of the limiving values of certain parameters contained in the equations.
Partial decoupling versus complcte decoupling. Details in the approximate
decoupling of an n-body problem into a k-body problem (k < n) and an
(n-k+1)-body problem in the situation where k of the bodies are rclatively
close to each other compared to the other mutual distances and where also the
k bodies have small masses compared to the other (n-k) bodies. The Hill
cquations for the motion of the moon as a special casc of partial decoupling
in the above situation with n =3 and k = 2.

Theory of so-called qmsi-first integrals which appear in the partially
decoupled system and which are derived from first integrals of the unreduced
system, Examples in the recduced and restricted problems of three bodies.

A method for appraising the validity of an approximate decoupling (either
partial or complcte) based on the use of Lipschitz constants. The hyperbolic
cosine appraisal for comparing the solutions of two systems of second order
equations,

There is a problem in applying this appraisal to the n-body equations
because of the collision singularities. If thesc singularities are excluded by
restricting attention to a region in configuration space in which each mutual
distance between pairs of bodies is not less than a fixed positive number
assigned to the pair in question, the resulting rcgion is not convex; and so
there is still a problem in the estimation of the Lipschitz constant in terms
of hounds for partial derivatives. This problem is solved for the appropriate
functions occurring in the n-body problem by proving that in this special
case the non-convexity of the region may he ignored.
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INTRODUCTION

One of the remarkable features of an n-body problem, of the type afforded
by the solar system, is the ease with which the system can be approximately
decoupled, Thus the motions of the planets about the sun are usually treated
as perturbed Keplerian motions, as are also the motions of satellites about a
planet. This approximate decoupling is possible when some of the masses are
very small compared to others and/or when some of the mutual distances between
the bodies are very large compared to the other distances.

If we introduce parameters into the system in a suitable way, the ensemble
of the decoupled systems may be regarded as the limiting case of the original
n-body system when one or more of these parameters approach certain limiting
values. For instance, a three body problem in which one of the masses is very
large compared with the other two is partially decoupled into one Keplerian
motion and one restricted (or reduced) problem of three bodies when one of the
smaller masses approaches zero; and it is completely decoupled into two
independent Keplerian motions when both of the two smaller masses approach zero.
This is the type of approximate decoupling observed in planetary theory. Another
type of decoupling occurs in linear theory where the distance between the two
smaller bodies is small relative to their distances from the largest mass.

Again we may take one of the parameters to be the smallest mass and we get the
same partial decoupling as before, when this parameter tends to zero, But, for
the other parameter, we take something which tends to zero with the ratios of
the smallest distance to the two larger distances, and simultaneously modifies
the time scale, There are several ways of doing this; but, if it is done
properly, the three body problem will again be approximately decoupled into two
Keplerian motions, onc for the motion of the intermediate mass (the earth, say)
about the largest mass (the sun) and the other for the motion of the smallest
mass (the moon) about the intermediate mass (the carth), But the time intervals
for the validity of these approximations may be vastly different, Considering
only the situation where the two above Keplerian motions are elliptic, the
approximations may be reasonably valid in each case for approximately the same
number of periods, but the period associated with the smallest mass may.be but
a small fraction of the period associated with the intermediate mass.

In this paper we wish first to consider a method for the approximate
partial decoupling of the n-body problem into an (n-k+1)-body problem and a
modified k-body problem (k<n) when the k bodies are relatively close to
each other compared to the other mutual distances. We also assume that these
k bodies are small compared to the other n-k bodies, When n=3, k=2, this
modified k-body problem is the problem formulated by the Hill equations, at
least if the (n-ke¢l)-body problem (i. e. in this case, the 2-body problem) is
given a circular solution, By introducing a second parameter and proceeding
again to a limiting case we may achieve a complete approximate decoupling.

Secondly we shall initiate a general theory of so-called quasi-first
integrals which arise, in the partially decoupled system, from the first
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integrals of the original system when the parameter takes on its limiting value,
say 0.

Thirdly, we give a general but rather crude method for estimating the error
consequent upon using the decoupled or partially decoupled systems in place of
the original system,

1. DECOUPLING OF THE n-BODY PROBLEM

1.1, Partial Decoupling

The original equations of motion are written as follows in terms of
position vectors gq for the n-bodies (with masses Mys Myy seey mn):

(@3] m q, = U i=1, va, k
(2) n qa-Uqa a= k+l, ,,.,n
where the dots represent differentiations with respect to the time t, where

the subscript q's in (1) and (2) indicate the gradient of U with respect to
the relevant g, and where U itself is defined by the following formulas

*
UsU +«V+W

" m; m, )
U I T—-——)—T jel, csay k
i‘j q] "qi
(3)
n k ™ m,
Ve T I CI
askel isl QW - %
mm
We L o B 8 = kel, ..., N,
a<8 UG " 9

Setting u = mpem, v *m, the center of gravity of these k bodies is

given by
k
-1
4 = I m.q.
(4) qy = v i Jq’

Letting LR Pl qD' T,=qa, - 4y we see that rJ. -r . qj -
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*
- = - - - - W remain
T,o-T A, - A5 rB T,o*dg - Q. Hence the formulas for U , V, mai
valid when the gq's are replaced by the r's, It is also clear that
k

= - = - = .q. - = 4). Hence
if1 mr, = Im(aq -q) =Lmnag -Inqg) =ZIngqg uqO 0 by (4) e

k
(5) T omr =0,
i=l
. “ - . 1 K
Evidently mF, o= omq - Mg = mq - My jfl quJ
-1 k
={ - m.u £ u
r. i . T,
i j=1 j
It is easy to see by direct calculation that
k n
(e) I U r = 0 and L Wr =0 .
2=1 4 Bekel B
Hence
%) m T » a1 K
ji=0U «V_ =-muy L v .
T, T, i ; T,
i i j=1 j
Similarly, we find that
k
. -1
® mFo =V * W mmu IOV
a a j=1 j

The equations of the n-body problem are easily seen to be invariant under
a transformation which multiplies each distance by a parameter s provided that

each mass is correspondingly multiplied by 53. llence, if 1 ceey T, BTE

k+1’
large compared to Tis eves Ty and if one wishes to exaggerate the comparative
largeness of the former to the .latter, it would appear desirable to multiply
each mass by 33 and each oé the vectors Trapr *oee Ty by s, but leave

Tis sees rk untouched. One then examines the effect of allowing s to

approach infinity., Carrying out these modifications on (8), and making use of
the formulas of (3) for V and W, we obtain
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6 6
4 kK s mima(ri - sra) s mums(srB - sra)
M Tyt T s L 3
i=1 Iri - sra] 8fa lsrs - st
k n 56 m,{sr, - r,)
TR S . "n 5Ty j
¢ j=1 B8=ksl lrj - srsl3

Dividing by 54mu and then letting s - «, we obtain

. ur m,(r, - r) n  mr
) P oe - <x3 I B "8
* !ra] Ba |r

These are precisely the heliocentric equations of notion for n-k¢l bodies,
namely the n-k bodies Mgy sees My referred to a hypothetical sun with mass

HEmp ot 4, placed at the center of gravity of the bodies Mys Moy vaay
m. Equations (9) thus approximately describe the notion of the n-k bodies

Moyl oo My and the center of mass of the k bodies m,, ..., n while

1’ k*

neglecting |r,|, ..., |r,| in comparison with | r but not

N PO PR

neglecting the total attraction of My eesy W ON the other n-k bodies,

If we also wish to neglect the masses m., ..., in comparison with
Thalt soes n, we follow the procedure as abdve except that we do not introduce

the factor s3 in connection with each of the k first masses, but only with
the remaining masses. We then find, on letting s » =, that

. m,(r, - T1) n mr
(10) ez b 8 33
Bha |r6 -l B=k+l |r8|

which, of course, is the same as (9), except that the first term is omitted on
the right hand side,

We now investigate the behavior of equations (7) under these operations,
neglecting LT m in comparison with Meep? *eeo M 38 well as

, r_. The equations may be written

Tys seey T in comparison with Tea1? *oe n

after the iﬁh.equation is divided by my in the following manner:
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m.(r, - ri) n mm(ral -r.) k n mm(r -71.)

r.om oI + g-u-lt p L=

i i gs 3 _
j¥i [rj -1l ask+l |7 -1,

Hence multiplying r, by s (a = k+l, +e., n) and m_ by s” and then
letting s > =, we get @

m.(r. - r,)

. i
ri = [. +
o r -y
ay )
n 53m (sr - r.) -1 k n m.s‘1’111°‘(sx-cx -r.)
lim [ I a2 3‘ T S ‘J———TL]
s+ oa=xkel [sr - r. | j=1 a=k+l |sr - r.]
a i a J

In order to evaluate the limit s + =, we introduce o = 1l/s. We then
find that

3 3
s m“(srcl - ri) _ u'l k m.s mu(sr“ -r,)
Isr - |3 jel st - r [3
-1 ma(rct - cri) -1 k m.mu(ru - 0or.)
=0 [—————r- u T 3 .
r -or,| j=1  |r_ =-or.|
a i a J

The quantity in the bracket is now cxpanded in a power series in g, It is
Kk

obvious, in virtue of wu = I mj , that the constant term is zero, while the
j=1
coefficient of o is readily computed to be

mr. 3mr (r 1)
ai ,_aaa i
r3 |1‘|5

a

In arriving at this result we use (5). It follows that (11) may be written in
the form

- m.(r, - r.) n mr. 3mr (r T,
12y F, o= ¢ Ll 3 _.ai " eaa iy,
R S A R Y A ENE

j i ) [+
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1.2, The Hill Example

We now indicate the manner in which the Hill equations are special cases of
equations (12), We thus assume n = 3, k = 2, so that k +1 = n= 3, We also
festrict attention to the planar problem, Equation (10) reduces to
- m.T,

e E

since the only value that o and B8 are allowed to take on is 3, This is, of
course, just the system for Keplerian motion, Suppose we take m, = 1 and

consider the particular solution x; = cos t, y; = sin t, So [r3| =1,
Hence equations (12) become
. my(xp-%)
X, = - X, *+3cos t (x, cost+y sin t)
1 2 2.3/2 1 1 1
[(xy=%)" + (yy=y)) 1%/?
(14)
- my(yp¥y) . .
v, ® P )2 s o )2]3/2 =Yt 3 sin t( X, cos t +y, sin t)
2751 Y2°Yy
- m) (x)-%,)
x, = T )2 o )2]3/2 - x2 + 3 cos t (x2 cos t #yz sin t)
17%2 Y1732
(15)
. my(yy-¥,) ) .
Y, = > 23/2-y203smt(x2cost¢y251nt).
[(x)=%)7 ¢ (yy=¥,)7]

From (5), we have in addition m X) + myx, = 0 and m,y, + myy, = 0; so that
(15) and (14) are not independen% of each“other, Setting x = X - X, and
Y =Yy =Yy we find on subtraction of (15) from (17) that

. -(m1¢m2)x
x=m2—]372—-x03cost(xcost4ysmt)
(16)
-(mlomz)y

y-m-yo?ssint(xcost#ysint).
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Setting z = x + iy, we can write (16) in the more compact form

-(mlomz)z

an Za —-z+3efRE e,

Iz
We introduce rotating coordinates at this stage by putting § = 2 e-lt, so that
zegett, T (2 eig)e!t, T (f+2it-0)et, and [z = gl

Substituting in (17) and suppressing a factor eit, we get

~(my*m))¢

Er20i-¢= B - &+ 3R(E) .

[t
Hence, setting ¢ = ¢ + i n and separating real and pure imaginary parts, we
find that
-(m, +m,)E
. . 1 2
£ «2n= —3.3/7 + 3£
2 2
(e« n%)®
.. - emyn
Nt 7
[" +n7]

which are llill's equations. They appear in the more standard form

. N X
X - 2y = 3x - (x2¢y2)3 =

;02).(--——2—%37—

(x"+y") :

(18)

if we take = (m1 + mz)l/sx and n = (m1 + mz)l/sy. The present x and y

are, of course, different from the x and y of (16).

I.3. Complete Decoupling

In carrying out the complete decoupling we observe that, if the k bodies
are very close to each other compared to their distances from the other n-k
bodies, their attraction (per unit of mass) on each other is much greater than
on the other n-k bodies, This will cause greater relative accelerations of
the k bodies than of the others, In order to exaggerate this effect we
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introduce the small parameter X in such wise as to change the time scale as
well as to multiply Tie vees T and simultaneously to render those terms on

the right of (12) which involve the other r's to be very small compared with
the other terms, This is achieved by multiplying Fio onees Ty by 12 and t
by As, and leaving Tiepe toos By and the masses untouched, When (12) is
thus modified, we find that
A_4 ;i . x'4 : m.(r., - ré) . AZ ; . muri3 . SmQra(ras- rﬁ)
j#i [rj - ri[ ask+l Irul lra|

First multiplying by M and then letting A > 0 we get the complete
decoupling with (12) replaced by

. m.(r, - ri)
(19) = L -l-aL-—-—g- , i=1, ..., k.
jhi ]rj - riI

which are precisely the equations for the k-body problem,

Notice that the same type of reduction occurs if we take the Hill equations
(18) in rotatingcoordinates. If we have multiply x and y by 3 and t

by As, these equations (17) take the modified form (after multiplying through

by a4
. 3, 6 X
-2y = X - ——
(xz R szs/z
“ 3.
y + 2A°x = -
2 2.3
x™ + ¥y9) /2

which reduce in the limit X + 0 to the equations for Keplerian motion,

It does not matter in such approximations whether rotating or non-rotating
coordinates are used, Correspondingly the resulting approximations can be
expected to be valid only over time intervals that are short relative to the
period of the rotation although they could be long relative to the period (say)
of the Keplerian elliptic motions representing motions (in the Hill case) in
which my and m, are very close to each other,

All of this is not in the least surprising, since the same change in time
scale applied to the equation (10) modified the latter merely by introducing a

151



APPROXIMATE DECOUPLING IN THE n-BODY PROBLEM

factor A'b on the left, IHence, on multiplying by A6 and then allowing X
to approach zero, we get

(20) r =0, a=k+1, .., n

as the limiting form of the other decoupled system. The time interval for a
valid approximation of (12) by (19) would presumably be comparable to the time
interval for a valid approximation of (10) by (20).

1.4, Mathematical Interpretation

The above intuitive discussion, about the "introduction of parameters' and
the "exaggeration" of certain effects by allowing the parameters to approach
their limits, may have had the desired effect of minimizing the complication of
formulas; but it has resulted in a logically inconsistent notation; and it may
possibly have baffled the reader in other respects as well, In order to
clarify this situation we offer the following mathematical interpretation of
the main result of this Section.

Consider the n- body problem with the n masses denoted by Mpis Mys ey
3 3 3 3 s
My ST 10 ST o0 S mk43‘ cees SR Let the position vectors of these n
bodies relative to the center of gravity of the first k of them be denoted

5
respectively by Azt ceey A“rk, ST

1’ ceas srn and let the time be denoted

k+l’
3 . .

by A”t. We regard s and X as constant (scalar) parameters, In this rather

unfamiliar notation the usual equations for the n-body problem (taking the

rravitational constant to be unity) may be written out. Thus the r's,

considered as functions of t, are found to satisfy the system,

d T, m.(r.-ri)
™ S
et g ]rj-ril

(21)
n x453mu(sru-xzri) o1 k n x453m.m (sru-xzr.)
* T o3 e Lot ICAE
askel [sr - A°r, ] j=1 a=ke+l Isr - A rj|
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2 -1.6 2 2.6
d T, . l; s Am (A t).-sra) - s7A mB(srB-sra)
2 2 3 3
dt j=1 | rj-sral Bfa |srB-sra|
(22)
S k n szm.mA(sr,-XZr.)
6 -1 B8
- Ay I L > 3 ,
j=1 B8=k+l B} rj-srBI

where u = m Myt M, Letting s + », equations (21) take the form

a%r

i m.(r.-ri) n 6 mmri 3muru(r . ri)
(23) —=~= I z+ I Xl 5+ = ).
dt j#L |rj-ri] ask+l |rul |rm|

and equations (22) take the form

2
d"r m, (r,-r ) n mr
(24) 2“.;‘6(2 B_§_°‘_3 - T BBS),
dt 8fa fr, - | Bekel |r |
8 a 8

Equations (23) and (24) are, of course, mere modifications of equations (12)
and (10) respectively, Namely they contain the parameter i, since the time is

here denoted by )\3: instead of t as in (12) and (10), Partial decoupling
has been achieved in the limit s + =, since the equations (24) are independent
of Tis ooy Ty But the equations (23) for X ¢ 0, still contain all n of

the unknown vectors, Complete decoupling only occurs in the limit X + 0,
leading to the systems displayed in formulas (19) and (20),

II1, QUASI FIRST INTEGRALS
11,1, Definition
Consider the system
(V) x = f(o, x, ¥), y = gl@, x, ¥) ,
where x and f are N-vectors, where y and g are K-vectors, where o is
a scalar parameter, and where the dot denotes differentiation with respect to
the independent variable t, We also assume that f and g are of class C'

in the region where solutions are considered, The system (1) is evidently of
order N ¢+ K,
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Suppose that this system is partially decoupled when ¢ takes on a
specific value, say 0O, in the sense that g(0, x, y) is independent of x,
We write

(2) g(0, x, y) = G(y) ,

where G is a K-vector, Let y(t) denote any fixed solution of the
"decoupled" system

(3) y = 60y

and consider the "non-homogeneous variational equations"

) V=6 Iy(IY « g 00, x, ¥(1))

where Y is a K-vector, where Gy is the Jacobian matrix of the components
of G with respect to the components of y, and where g, is the partial
derivative of g with respect to o,

A function F(t, x, Y) is said to be a quasi-first integral of the system

(5) x = £(0, x, y(t))

of order N, if it is an ordinary first integral of the (N + K)th order

system consisting of (4) and (5).

In other words, if x(t) is any solution of (5) and if the pair
[x(t), Y(t)] satisfies (4), then

(6) Fft, x(t), Y(t)] 5 constant,
Since (5) does not involve: Y and since (4) is linear in Y, it is easy to

express Y by quadratures in terms of x, In fact, if Q(t) is a fundamental
matrix solution of the homogeneous variational equations,

Q= Gy[y(t)] a,
then any solution of (4) must assume the' form

t
HOREONCEN a(s)™ 00, x(s), y(s)) ds) ,

where ¢ is a suitably chosen constant K-vector, Conversely, if c¢ is an
arbitrary constant K-vector, the Y(t) given by the last formula satisfies (4).
Hence inserting this expression for Y(t) into (6), we see that our definition
of a quasi-first integral of (5) implies that
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t
-1
Flt, x(t), 2(t)(c + [ 2(s)™" g (0, x(s), y(s))ds)] = constant ,
0
no matter how the constant K-vector c may be chosen,

We first wish to discuss this definition with respect to the system (21)
and (22) of the previous section, These form a system of 3n equations, each
of the second order, in the components of the r's, liowever, we have taken the
origin at the center of gravity of My eeey M, SO that we have three known

linear relationships among the unknown vectors Tio eess Ty These relation-

ships render three of the equations (21) redundant., Thus the system (21) and
(22) provide only 3n - 3 independent equations of the second order, 3k - 3
from (21) and 3(n - k) from (22). These second order equatioms may each

be replaced by two first order equations by the familiar devise of using phase
space instead of configuration space, Lquations (21) are therefore equivalent
to a set of N = 6k - 6 first order equations and equations (22) are
equivalent to a set of K = 6(n - k) first order equations, It is with these
understandings that we consider the system consisting of equations (21) and (22)
of the preceding section as an example of the system (1) of the present section,
We take s = o-l, so that as o + 0, the system becomes partially decoupled as
already explained,

The full system of N + K = 6n - 6 equations admits four well known first
integrals corresponding to the energy and the three components of angular
momentum, (The other six integrals of the n body problem, namely those
corresponding to the linear momentum, are not available because of the choice of
our non-inertial coordinate system, They would be used for obtaining positions
with respect to an inertial system in terms of unknown r's).

The quasi-first integrals were invented to investigate what happens to
these first integrals in the partially decoupled system, Briefly as o =+ 0,
all four of these first integrals reduce to first integrals of the system (24)
of the previous section; while the system (23), considered for a fixed solution
of (24) in which ru(t) are regarded as known for o« =k + 1, ..., n, has, in
general, no first integrals whatever, It does turn out, however, to possess
four quasi-first integrals in a manner described in a more general setting below,

II. 2, Theorems on Quasi-First Integrals

In the sequel we suppose that the system (1) admits a first integral
hio, Xy y) and that h(0, x, y) is independent of x. Let

N h(o, x, y) = H(y) .
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We also assume that both h and Il are of class (",
Theorem 1, If y(t) is any fixed solution of (3), then the function
(8) F(t, X, Y) = h (0, x, y(t)) * lly(y(t))\’
is a quasi-first integral of the system (5).
Proof, Since h(o, x, y) 1is a first integral of (1), we have
he@s Xy ¥) £, x, ¥) *+h (@, x, y) 8O, X, ¥) =0

Differentiate this with respect to ¢ and then set ¢ = (0, Remembering (2)
and (7), we find in this way that

9 by (0, %, ) £(0, x, ¥) +h (0, X, ¥) Gly) ¢ H () g (0, X, ¥) =0,
since hx(o, X, y) = 0 by (7). Also the system (3) admits the function H(y)
as a first integral, Thus, we have the identity
H G 0.
y()') 6]
Differentiate this with respect to y and then set y = y(t), We thus get
1) t G t + H t G y(t E
yy(y( )) G(y(z)) y(y( )) ),()( ))

Form the inner product of the left member of this last identity with the vector
Y, We thus obtain

(10) Y Hyy(y(t)) Gly(t)) + “y(y(t)) Gy(y(t))Y =0,
or more briefly
(11) [nyy(. + ny(,y]Y =0,

Now evidently, from (8) and (3), we have

, 3 .
(12) 3T [ho :(“‘ x, y(t)) “y),()'(t))Y] G(y(t))

(13) %'; £0, x, y(©)) = h__(0, x, y(t)) £(0, X, ¥(t))

a4 3 (6,00 + g, (0, x, Y1)} = W /(1) {6,V + £ (0, X, M)} .

——
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We now add (12), (13), and (14). On the right hand side the underlined terms
cancel out because of (9). The other terms cancel out because of (11) and the
fact that H_ GY = H_YG, the Hessian matrix H being symmetric, Thus we
find that vy vy

AF aF aF
I I 0, X, ¥(0) * 57 (6,0 + g, (0, x, y(t))} = 0.

Hence F is a first integral of the system composed of (4) and (5), and hence,
by the definition, it is a quasi-first integral of the system (5), as we set out
to prove,

In the previous subsection we indicated how the Y can, in general, be
eliminated from a quasi-first integral by use of quadratures acting on the
unknown x, The method involved the knowledge of a fundamental matrix solution
of the homogeneous variational equations, In the particular instance treated in
Theorem 1, where Y occurs only in the combination Hy(y(t))Y as in (8), this

elimination is much easier., The essential facts are displayed as follows:
Theorem 2, If y(t) 1is any fixed solution of the system

(15) y =60y} ,

which has the first integral H(y), and if Y(t) satisfies the non-homogeneous
variational equations,

(16) V=6 (y(t)Y + K(D) ,
then
t
an Hﬁﬂowu)-aowuunuﬂu¢u¢ﬂ%nw%).

In particular Hy(y(t))Y is a first integral of the homogeneous variational
equations (cf, special case K(t) = 0).
Proof, Since H(y) is a first integral of (15), we know that Hy(y)G(y) =0

is an identity in y, Differentiating with respect to y and then setting
y = y(t), we obtain the following identity in t:

“yy(y(t)) Gly(r)) + H (y(1)) Gy(Y(t)) =0,

Forming the inner product of the left side of this identity with the vector
Y(t) we obtain
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m
<
.

(18) Hyy(y(t)) Gly(t)) Y(t) + Hy(y(t)) Gy(y(t)) Y(t)
On the other hand
d . .
I [Hy(y(t)) Y(t)] = Hyy(y(t))y(t)Y(t) + “y(Y(t))Y(t) .
Hence, from (15) and (16), we find that
d
oy [“y(y(t))Y(t)] = “yy(y(t))G(y(t))Y(t) + Hy(y(t))Gy(y(t))Y(t) + “y(y(t))K(t) .

But the first two terms on the right of this equation cancel because of (18).
What is left is equivalent to the stated theorem,

Theorem 3, Under the hypotheses of Theorem 1, let x(t)} be an arbitrary
asoizn o
solution of (5), Then

t

h (0, x(t), y(t)) + / Hy(y(s))go(O, x(s), y(s))ds = constant,
t
0

Proof, Since the F of formula (8) is a known quasi-first integral of (5),
it is known at once that

(19) ha(O, x(t), y(t)) + Hy(y(t)) Y(t) = constant ,

where Y(t) 1is anyvector satisfying (4), x being set equal to x(t). But we
then know from Theorem 2, with K(t) = gc(O, x(t), y(t)), that

t
H (y(£))Y(t) = [ B _(y(s)) g_(0, x(s), y(s))ds + constant ,
y g, o

Inserting into (19), we obtain the result to be proved,

I1.3, Application to Reduced 3-Body Problem

The detailed application of the theory of quasi-first integrals to the
systems of the previous Section has not been carried out, Instead we nresent
the following outline of how the application may be made to the planar reduced
three body problem and in particular to the restricted problem, at least to the
point of producing, in this example, the constants of motion referred to in
Theorem 3,

We consider the planar three body problem with three masses o, u, 1 - u.
We use two frames of reference, one with origin at the center of mass of the
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three bodies, and a parallel frame with origin at the body with mass u, We let
X10 Xy be the coordinates of o with respect to the first frame, and we let '

Yis ¥y be the coordinates of 1 - p with respect to the second frame, Then it

is elementary, though somewhat laborious, to show that the full planar three
body problem may be reduced to the solution of the following system of
differential equations:

) X e -l s Dxg ¢ (1= wy R - (- Wi+ Dxg - u oyl
20

i =1, 2,

" 2 - - -
vy o -yl e y22] 2, of(osl)x; - wy Ir 3. s{(oel)x; + (1-w)y,]R 3
(21)

i =1, 2,
where, both in (20) and in (21), we have used the abbreviations,

2 = [EDx - w1 e [(oel)x, - wyy)?

@22)
2 2 2
W = [eeDx + (-wy)0 ¢ [eeD)x, ¢ (1-1)y,]

The four second order equations displayed in (20) and (21) are equivalent
to eight first order equations, which form the system to be identified in this
example with the System (1). Thus N =K =4 and x and y are tobe |
regarded as four vectors with components (xl, Xop %9 xz) and (yl, yz,,vl,yz)

respectively, The system has two first.integrals,

nll) . o(a#l)(xl;tz - ilxz) + u(l-u) (Ylg’z - ).'lyz)
and

h® a Loy v 5,2 + FuC-n @7 ¢ 3,0 - e onlo

)
2 R T
..‘] 2.2
Y *Y,

Thus, we obtain
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(1) . .
ha (0, x, y) = XX, - X%,

(23)

(2) 2 e 2 u l-u
ho oxz)-r--—-ro

1 .
©, x, y) =& (x
2 1 0

where R, and T, arc obtained from the expressions for R and r respect-
ively by setting o = 0 in (22),

1) 0B, x50 wa-w o8, - 7y

“(2) 2 u(leyw)

2

0 =00, %,y = a0 e, e -

7
ey,

P4

The system (3) in this example is represented by (21) with o = 0, namely

- 2 2,-3/2 R R
2 T - -
(25) i yily" vyl ’ i=1i,2,
and the system (5) is represented by
(0) K= -ulxg e ey IR - (e (kg - wy 0T, i e, 2
i i 7115 i Wilty o s o

thcse being the equations for the reduced problem of three bodies when Y and
Y, are thought of as being known functions of t satisfying (25). The four-

vector g (0, x, y) 1is readily seen, in this example, to have the components,
00 00 Gy = wy ™ e e ey RS, xomuy ) TP - (ke (lew)y R S
b 1 170 1 1770 TR e 2 2’70

According to Theorem 3, we should have two constants of motion, which we shall
denote by G and s given by the formula,

: t .
i R
& = h Yo, xw, @) o ] 1 Do) g0, xe), vy, i1, 2.
%
We now have available all the data necessary for the use of this formula, namely

the four components of gc(o, X, ¥), and the expressions for hq(x)(O, X, y)
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and Hy(l) (y), given by (23) and (24) respectively, We thus obtain

t
. . -3 -3
27 €)= oxXy = XX, # u(l-w) ft (x2y1 - xlyz) (r0 - RO )ds
0
o2 o2y (1w £ c 33
¢y m x5 e %) - o * u(l-p) It (x)y) * xy,) (™" - R ")ds

0

t
. . -3 -3
- u(l-w /t (yyry * ¥y d (o rg™™ + (1-w)R, ") ds
[y
where the symbols Xi s ;‘i' i ;'i' T RO‘ occurring outside the integral signs,
represent functions of the independent variable t; but, when they occur
inside the integral signs, they represent the corresponding functions of s,

the variable of integration,

In the special case of the restricted problem of three bodies, in which we
take yl(t) = cos t and yz(t) = sin t, we have YiYp t Yy, ® 0, so that

the second of the two integrals in (28) drops out completely, Moreover
Y p*-v, and Yy =¥ This means that the first of the two integrals in

(28) is the same as the only integral in (27), Thus we find that

L2 220 s T € 1Y)
(29) -3 (x1 * X, ) (xlx2 xlxz) Ro _——ro
. . t -3 -3
(30) cy * XX, - X x, ¢ u(l-u) [t (xz(s)cos s - xl(s)sxn s) (r0 - Ro )ds .
0

Thus in this particular case, we have a first integral in the ordinary sense,
namely the integral of Jacobi, In rotating coordinates (5;1, 52), connected

with the non-rotating coordinates by the transformation,
. . it
(x) i x)) = (5 +ig)e,

the equations (26), in which Yy = cos t and Y, ® sin t, become
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w(gy*l-w)  (1-w) (6-w)

£, -2t =g - -
1 2" 5 3 3
R o
(31}
. . vEy,  (1-w)g,
RS R A A
0 o

where R, and r, have the same meaning as before but are now expressed in

0 s}
terms of (51, 52) instead of (xl, x2), so that

2 2 2 2
and T, = (El-u) MR

2 2
RO = (5141-;.\) + 52
These are the usual equations for the restricted problem of three bodies.
The equation (29) is transformed into

2 1-1)

s2, 1, 2.2 i
A R W el B N

1 e

7 (&
which is the usual form of the integral of Jacobi, Finally the equation (30)
is transformed into

1, 2, . t -3, -3
§7 ¢ 67 ¢ g8y - €8, v ul-w) It gy(8) {ry™" - Rylds = ¢
0

The fact that the left member of this equation is a constant of the motion is
an easy direct consequence of (31),

III, ERROR LESTIMATION
IIT,1, The Hyperbolic Cosine Estimate

We wish now to present a method for estimating the error in the computation
of trajectories by using such decoupled systems, as those considered in Section
I, instead of the exact systems, Actually the method applies to any kind of
approximation, whether partial or complete decoupling occurs, or not. The
problem is formulated as follows:

Suppose we have two N-vector functions f(x) and g(x) of the N-vector
x, defined and continuous in some region R of N-vector space. Suppose also
that f and g are approximations to each other in the sense that the norm
of their difference is bounded throughout R by some positive number §&. The
smaller § is, the better the approximation. We thus assume that in R
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(H [1£0x) - gx)|] < 6.

The norm ||...|| referred to may be chosen arbitrarily, so long as it has the
usual properties of a norm in N-dimensional vector space,

Let x(t) e R and y(t) ¢ R be solutions of the systems

d2x

(2) — = £(x)
dt

and
&

(3 =
dt

assuming the same initial conditions
(4 x(0) = y(0) = a, say, and X(C) = y(0) = b ,

and defined on the interval 0 < t < T, The problem is to find as small an
upper bound as possible for ||x(t) - y(t)]].

In the application to the n-body problem, N = 3n, and the region R is
a region of configuration space in which the distance between cach rair of the
bodies exceeds a positive number assigned to such pair,

We could write the systems (2) and (3) as systems of first order equations
by doubling the dimensionality of the space, and then we could read off from
the classical literature estimates of the required type, at least, if one of
the vector functions f or g satisfies a Lipschitz conditicn,

(5) [[£(x*) - £ < B |{x' = x]].

We prefer, however, to adapt the classical methods directly to the systems of
second order equations in order to get better results, (cf. E. Kamke,
Differentialgleichungen, Lasungsmethoden, und Losungen, Chelsea Publishing
Company, New York, 1948, pp, 40-41,) We shall indeed assume that (5) holds as
long as x and x' are both in R, and, for ease in later formulations, we
introduce the following definition,

An Nevector function f defined in a region R of N-dimensional vector
space and satisfying the Lipschitz condition (5) with Linschitz constant B is
said to satisfy the Extension lypothesis relative to K and B, if for every
positive number A > B it is possiblc to define an N-vector function fA

throughout the whole of N-dimensional vector space such that

(6) £(0) £ £(x)
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for all x e R and
) HED = £l A lxr - ]

for any two N-vectors x and x', whether in R or not.

Theorem 1, 1f f satisfies the Lxtension Hypothesis, relative to R and B,
and it (1), (2), (3), (4) are also assumed, then

1
(8) [x(t) - y() | = st (cosh (B2t) - 1) for 0 gt <1,
Proof. x(t) and y(t) satisfy respectively the systems of integral equations

t

(%) x(t) = a+ bt + [ f(x(s))(t-s)ds
0

and
t

(10) y(t) = a + bt + [ g(y(s))(t-s)ds
U

which under the initial conditions (4) are equivalent to the differential
systems (2) and (3). Let

xO(t) = v(t) for 0 gt T

e

(11)

t
x (t) = a+ bt s [0 £, (%, _,(8)) (t=5)ds, ksl 2, «u..

We note that all these successive approximations xl(t), xz(t), ... must exist

for 0 <t < T even though some or all of them do not stay within the region

R, For the function fA is defined and continuous over the whole N-vector

space, It is easy to prove that
lim :
(12) koo xk(t) = x(t) uniformly on [0, T] .

In fact, from (1l1) and (7), we find that

t
Hx, (8 - x (0] <A 'fo Hx (1) - % _(0O]] (t-s)ds .

164




APPROXIMATE DECOUPLING IN THE n-BODY PROBLEM

If we now let u = max Ile(t) - xo(t)]l over the interval [0, T], we may

now prove easily by induction that
k 2k
||xk’l(t) - xk(t)|| <A ptTT/(20)! for te [0, T],
It follows from the Weierstrass test that the sequence {xk(t)) converges
uniformly to some vector function x*(t), and, since, from (7) ,
[T£40x €)= £, 2D < A [Ix () - x+()]],
it is also obvious that

b £ (8)) * £,G*(1))  wnifornly on [0, T]

Hence passing to the limit as k » =, we see from (11) that
t
Xx*(t) = a+ bt + [ £, (x*(s)) (t-s)ds .
0
This means that x*(t) satisfies the system x = fA(x) and the initial
conditions (4), But x(t), because of (6), also satisfies the same conditions.
Because of the uniqueness theorems covering such solutions, it follows that
x*(t) = x(t). Thus (12) has now been established,
From (10) and (11) we are enabled to write
t

t
Y - x ) =BG (s - ] £ (D) (e

whence, using the fact that y(s) ¢ R so that fA(y(s)) = f(y(s)) by (6), we

find that

t t
y(t) - x (1) = /0 (8(y(s)) - £(y(s)))(t-s)ds » IO (£,(y(s)) = £,(x_;(5))) (t-9ds.

Using (1) and (7), we now find that

t
Hy(®) - x Il s @/t v af [y - x_ )] (t-s)ds.
0
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From this we prove routinely by induction that

k
8
[ye) - x (0] < el

Hence allowing k + =, we find, from (12), that

1

p.2p _ hd
At .sa) (cosh(AZ ) - 1) .

(2p)!

Ny - xm)ll g% 1
p=l

Since this is true for all A > B, we find easily that (8) must hold as stated
by the theorem.

Theorem 2. The inequality (8) can not be improved under the hypotheses of
Theorem 1,

Proof. We take the example in which N =1, [|x]| = |x|, f(x) = Bx,
() = Bx + &, and R is the set of all real numbers, Thus if (2), (3), and
(4) are to be satisfied, we find at once that the difference y(t) - x(t) = w(t}),

say, must satisfy w = Bw + & together with the initial conditions
w(0) = w(0) = 0, Integrating, we find that

1
y(t) = x(t) = w(t) = 6B (cosh (BZ t) - 1).

so that it is possible in particular examples for the equality sign in (8) to
hold.,

Theorem 3, Under the hypotheses of Theorem 1, we also have

1 1
(13) [Ix(t) - y(©)|| < 687 sinh(82 t) .
Proof. Subtracting (10) from (9) and differentiating, we see that

t
x(t) - y(t) = fo (£(x(s)) - g(y(s)))ds

t t
- fo (£(x(s)) - £(y(s)))ds + Io (f(y(s)) - r{y(s)))ds
lence, from (5) and (1), we obtain

t
[[x(t) - ye) |l =8 [ [lx(s) - y(s)||ds + st .
V]
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We now use Theorem 1 to obtain

t 1 1 1
[x(t) -yl < 5]’0 (cosh (B2 s) - 1)ds + 6t = 8B 2 sinn 82 t ,

as we wished to prove.

II1,2, A Useful Lemma

In the application of the preceding subsection to the equations of motion
for the n-body problem it is necessary, first, to choose a region R in which
a suitably chosen Lipschitz condition will hold, and, secondly to verify the
Extension Hypothesis, introduced in Theorem 1, For both of these nurposes the
following Lemma is useful,

Lemma 1. Let ¢, (r) =t ogr r>1; but, for 0<r <1, Ilet
Lemma 1 k Z zrsl,

(6k+3) (2k+3) (2k+1) (2k+3) 2 3(2k*3) 2k  3(2ksl) _2ke+2

S 1173 e ¢ =5y P v o VLI ool where k> 1,

Then these definitions agree at r = 1, Moreover ¢ e C'" for 0 < r<> and
lim

[¢k(p)(r)| P+ 0,0, where D0 (k) =0, p=1,2,

Proof, To show that °k e C' it is only necessary to compute the right handed

and left handed derivatives of orders 1, 2, 3 at the one point r = 1 where
¢k obviously fails to be analytic, Itwill appears that each left handed

derivative at this point is equal to the corresponding right handed derivative,
Moreover these right and left derivatives are also the limits of derivatives

g taken on the right and left respectively. The details are elementary and are
omitted. We record, however, that for 0 < r < 1,

L (Zkel) (2k+3) 3(2k+3) 2k-1  3(2ksl) kel
e 1Y 2y YRy T ) e

2
(2k+1) (2k+3) | 3(2k+3) (2k=1) 2k-2  3(2k+1)° 2k
R(k-1) MY T3 r R S

2 2 '
R 3(4k ;4k-3} J2k=3 _ 3(ak ;4k+1? 2kl

(T = -
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Since ¢, (r) and its derivatives are, for r 21, simple monotonic
functions of 'r which tend to 0 as r + =, the problem of estimating the
maximum moduli of the first two derivatives of ¢k(r) may be reduced to a
study of what happens on the interval (0, 1].

Since @'”k(l) = -6, since ¢'"k(r) has a simple zero at

2. . . 1/2
55711L4% , and since it vanishes nowhere else on the open interval
4k“+4k+1

T=x1 =
(0, 1), it follows that o"k(r) assumes its maximum at r = T But a

straight forward calcultion based on the formula for ¢”k(r) shows that

.
o (ry o GEED @) | 12k e12kes 4k’ eak-3.
- . T B )
K7k R w0 T

From this, we obtain by routine methods that

lim |,
koo ¢k(M) 7 2

- lim | : c s :
Since Koo ¢'k(0) = -1 and o"k(r) is monotonic increasing on [0, rk] and

monotonic decreasing on [rk, =), it follows that

lim
ke

lon (0] £ 2+ 0,(K), 0,(k) =0,

which is one of the two desired estimates, To get the other estimate we write
the above formula for ¢'k(r) in the form

(13) ¢' (1) = ¥ h(x)

where

L. (2ke1)(2k+3) | 3(2ke3) 2k-2 _ 3(2kel) 2k
() e e T - A

It is readily found that h'k(r) is positive throughout the open interval

(0, 1). Hence

- R L b (0) £ () £ () = e () = -
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for all r on the closed interval {0, 1]. Hence nultiplying by r and using
(13) we obtain, for r e [0, 1}, the following inequalities

LD | GBS ¢ <oy 520

It follows that |e', (r)] g “’;’_H_fk” =1+ 0,(k) , which is the other

required estimate,

111,3, Linschitz Constants for Non-Convex Regions

If f 1is an N-vector function of class (' defined over a convex region
R in the N-dimensional vector space of the vectors x and if the N4 partial
derivatives of the components of f with respect to the components of x are
bounded in R, then one can always find a Lipschitz constant B, which is
related in a simple way to bounds on certain expressions involving these N2
partial derivatives, such that (5) holds for any two points x' and x in R,
For instance if P 1is the least common upper bound for the absolute values of
all N? of these partial derivatives, one may take B = NI’, at least if |||
2 4
)2, or the "uniform'" norm MaX (Ixi[),

n
denotes the "Euclidean' norm (L x4
i=1 1¢igN

n
or the nameless norm ¢ [x.| .

If the region R 1is not convex the situation is more complicated, One way
of dealing with it is to choose a convex region R* which contains R and seek
a (' extension f* of f over the whole of R* in which the bounds on these
derivatives over R* exceed the bounds over R by certain increments which
are regarded as permissible, These permissible increments in some cases, which
we term regular (but by no means in all cases), may be taken arbitrarily small,
From these bounds over R*, we then obtain a Lipschitz constant B* such that

(14) [lEr(xty = £2 0[] < 8 [|x' - x]]

as long as x and x' are in R* and hence a fortiori as long as they are in
R where f* = f,

In the reﬁular case, just defined, the B* would exceed by an arbitrarily
small amount the B obtained in the same way from the bounds of the partial
derivatives over R but ignoring the non-convexity of R where f* = f, In
other words if € is any positive number we could (in the regular case) choose
f* in such a way that the B* in (14) is not greater than B + ¢; so that,
remembering that f* is always the same as f in R, we obtain, for any two
points x' and x in R, the following inequality,
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[Ex) - £ g B +e) [[x s x|,

Hence, allowing € to tend to zero, we obtain (5). Thus in the regular case,
the Lipschitz constant may be regarded as related to the bounds for the partial
derivatives exactly as they should be if R were convex,

I11.4, Application to the n-Body Problem

In the problem of n bodies, the N = 3n components of the vector «x
are denoted by (xl, Yye 290 Xge You 2o enes Xy Yoo zn), where X0 Vi and

Zi are the coordinates of the mass point m . The 3n components of f may

be written in the form

18y 13U 1_ay (a1 2 n
m, 9ax, °’ m, 8y, ' m, 3z, °’ i L
i 7% i 77 i i
where
m, m,
Us I L J and r,., = ((x.-x.)2 - (yA-y.)2 + (z.-z.)z)l/2 .
i< ij ij i7j i’ i%j

A typical closed region R to be considered is one which excludes all
points for which one or more of the rij are zero, say the set of all points
for which r

i, j=1,2, ..., n; i4# j, Here 0.5 " are

0.,
3 J3
(1/2)n(n-1) assigned positive numbers. This region is evidently not convex;
but we nevertheless are in the situation of the regular case mentioned above.
In fact we can take R* to be the whole 3n-dimensional space and obtain a C'
extension of f over the whole of R* by choosing a positive integer k > 1
and taking the 3n components of the extension f* to be

ij = %15}

1 BVk 1 avk 1 avk . L s .
m. 3x ! . 3v. * m 37 ! =3 b’ e .
m axi m ayi m, azi
where
-1 -1
Vk = I m mj oij ok(cij rij) .

i<j
Then from the lemma of SubSection III,2 one finds that bounds for the

partial derivatives of the f* over the whole of R* exceed the bounds for
corresponding derivatives of f over R by arbitrarily small increments
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provided that k 1is taken sufficiently large,

It is evident also that this same substitution of Vk for Uy suffices
to establish the Extension Hypothesis of Theorem 1, Sub-Section III,1,

For simplicity, we have considered here only the unreduced form of the
equations for the n-body problem; but similar considerations would apply
equally well also to such other forms as the helio-centric equations, the

barycentric chain forms, or the various reduced equations considered in Section
I,
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SUMMARY

The perturbation problem for a system of non-linear differential
equations under general linear (but not necessarily homocgenous) two point
boundary conditions is reduced to the problem of solving k '"bifurcation"
equations, where k is the degeneracy of the problem. In the non-degenerate
case k = 0, the set of such equations is vacuous and the problem is
automatically solved, If k # 0 and if there are k independent first
integrals, a significant transformation of the bifurcation equations in terms
of these first integrals is carried out. The largest section of the paper is
concerned with the construction of generalized Green's matrices (and with
kindred matters) for linear systems with boundary conditions of arbitrary
degeneracy, The generalized Green's matrix for the variational equations is
prerequisite to our treatment of the non-linear problem,

INTRODUCTION

We extend here some results previously obtained for periodic boundary
conditions, C£. Annals of Mathematics, volume 63 (1956) pp. 535-548, Our
original purpose was to develop general methods for the perturbation of
periodic solutions of the n-body problem satisfying certain added conditions
of symmetry, For this purpose the problem frequently could be formulated in
terms of two point linear homogenous boundary conditions, It then became
evident that the same methods might work also for problems of entirely
different nature, Hence we devised the formulation described in Section I,
where the boundary conditions are linear but not necessarily homogeneous, It
is probable that much could be done for non-linear boundary conditions, but
our historical introduction to the problem was such that questions of this
sort arose too late to be considered here, There is obviously much still to
be done in this field, With this in view we have carried out the developments
of Section Il on linear systems to a rather more complete state than strictly
necessary for the primary purposes of this paper alone,
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I. FORMULATION OF THE PROBLEM

We are concerned with the problem of solving a system of differential
equations under general linear (but not necessarily homogeneous} two point
boundary conditions. More precisely, let the differential system be written in
the form,

dg/dt = F(t, &, u) ,

where t 1is the (scalar) independent variable, £ 1is an n-vector the
components of which are the unknown functions, and u 1is a scalar parameter.
F is an n-vector function defined and of class C' for 0 ¢t < T, as long
as u and & belong to suitable domains, We seek functions £(t) satisfying
the above system as well as the following system of boundary conditions:

By £(0) * B £(T) = p ,

where p is a given n-vector and both B, and B _ are given n x n matrices,
This system of boundary conditions is equivalent to n scalar conditions, whid,
if they are independent, are presumably just right to determine the n constants
of integration for our nth order system of differential equations, To insure
the independence of our boundary conditions, we assume that the rank of the

n x 2n matrix (Bu, BT) is equal to n.

The perturbation problem, to which we devote attention, assumes that for a
particular value of u, which without loss of generality we may evidently take
to be 0, we have a known solution, say £(t), Our problem is to determine a
solution for u ¢ 0, say £(t, u), such that 1lim £(t, u) = z(t).

u=+0

We obtain a more convenient formulation of our problem by introducing the
following notations:

x(t) = £(t) - £ (¢)
Aft) = Fg(t. t(t), 0)

f(r, x, u) = F(t, ¢(t) + x, u) - F(t, g(t, 0) - A(t)x ,

where FE denotes the jacobian matrix of the components of F with respect to

the components of £, Since ¢(t) is regarded as known, so is the matrix A(t).
And evidently f£(t, x, u) 1is of class C' and vanishes together with its
partial derivatives with respect to the components of the vector x, when

u=0 and x =0,

Since z(t) is supposed to be a solution of the two point boundary problem
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when u = 0, we have

dz (t)/dt = F(t, g(t}, 0)

and
By 5(0) + B g(T) =p .

It is now clear that £ will be a solution of the original two point
boundary problem if and only if x satisfies the system

dx/dt = A(t)x « £(t, x, u)
and the homogeneous linear boundary conditions
Bo x(0) + BT x(T) =0 ,

Our perturbation problem can now be formulated in terms of finding a solution
x = x(t, u) of the last written differential sytem and the last written
boundary conditions such that 1lim x(t, u) = O,

w0

It is relatively easy to prove, for |u| sufficiently small, the existence
of such solutions provided that the so-called variational system

dx/dt = A(t)x

has no solutions satisfying the above homogeneous boundary conditions other than
the "trivial" solution x = 0, This is the so-called non-degenerate case, In
this case the solution may always be found by a convergent process of
successive approximations.

Many of the interesting problems in celestial mechanics are not, however,
of this non-degenerate type, The problem is said to have degeneracy k, if the
variational system has k linearly independent solutions satisfying the above
homogeneous boundary conditions (upon which all other such solutions are linear-
ly dependent), If k > 0, the original problem may have no solution; but, if
it has, it may be found by a method of successive approximations followed by a
solution of a system of k so-called "bifurcation" equations, The way in which
this is done is explained in Section III. In the non-degenerate case k = O,
there are, of course, no bifurcation equations to solve.

To prepare the ground for the treatment in Section III, we mnust present in
the next Section a considerable theory of linear systems, The non-degenerate
case is included because all considerations are valid when k =0, In fact most
of the difficulties completely collapse when k = 0, many statements and
conditions becoming vacuous,

The linear theory of Section II has close relationship with previous work
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by W, T, Reid on gencralized Green's matrices for compatible systems of
differential equations, (American Journal of Mathematics, volume 53 (1931},
pages 443-459), In this referencc there are references to still earlier work
by G. A. Bliss and others, It would probably be possible to derive all the
results we need by citing various theorems presented by these earlier authors,
It will be easier, however, to give independent proofs; and this will have the
advantage of developing some additional facts, which we shall also need,

11, PRELIMINARIES ON LINEAR SYSTLMS

We wish to consider continuous n-vector functions x(t) = [xl(t), ceey
xn(t)l defined on the interval [0, T] and satisfying n indenendent iinear

homogeneous end conditions of the form,
(@))] B“ x(0) « BT x(T) a0,

where B0 and BT are given constant n x n matrices.

A vector x(t) which satisfies (1) will be called admissible, Otherwise
it will be called inadmissible,

The condition (l)can also be written in the form

(2) (B By /x(0)\ =0

0°* T
x(T)
where (B _, BT) is, of course, the n x2n-matrix formed by the indicated
juxtanosi?ion of B, and B, and likewise

) T

x(0)

x(T)
is 2 2n x 1 matrix formed by the juxtaposition of (column) vectors x{0) and
x(T). Since the n conditions given by (1) or (2) are to be linearly
independent, it is seen from (2) that it is both necessary and sufficient to
assume the rank of @U, BT) to be n, as we henceforth do. This means that

(DO, BT) contains a non-sigular n x n matrix C, The matrix (BO, B.) may

T

then be modified by permuting its columns so that it appears in the form
(€, ), Then evidently

c, b Y -1
0
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where I is the n x n identity matrix, We thus find that there exist n x ne

matrices U0 and UT' such that

(3) (BO, BT) U0 =1,
U,
T
Yo ’(.-1
In fact, we may obtain U by performing on the rows of 0 the same
T
permutation as we apply to the columns of (C, D) in order to recover
(BO, BT). We also introduce the matrix U(t) defined by

-1 -1
(4) U(E) = (1 - £TT)Uy + T U,

so that U(0) = U0 and U(T) = U,
from (3).

T The following lemma then follows at once
Lemma 1, If (BO, BT) is of rank n, there exists an n x n-matrix U(t)
whose elements are linear functions of t such that

(5) BOU(O) + BTU(T) =1,

Incidentally, although the columns of U{t) are all continuous n-vector
functions of t, they are all inadmissible in the sense of the above definition
of admissibility,

Theorem 1, Consider the linear differential system,

(6) dx/dt = A(t)x + f(t) ,

where x and f are n-vectors and A is an n x
known continuous functions of t, defined for 0 £

nxn-matrix such that dX/dt = A(t})X and det X(0

)
det X(t} # 0 forany t on {0, T]). Let B, and T

matrix, A and f are
< T. Let X(t) be any
0 (and hence also

B be given constant

Ne
t
4

n x n-matrices such that the rank of (B is n, Let n - k denote the

0 B
rank of the n x n-matrix BOX(O) + BTX(T), so that k 1is the number of linear-

ly independent solutions of the homogeneous system corresponding to (6) which
are admissible in the sense (as defined above) that they satisfy the boundary
condition Box(()) - BTx(T) = 0,

Then there exist (independently of f) a k x n-matrix function =s) and
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an n x n-matrix G(t, s), both continuous, except that G(t, s) posseses a
finite junp at t = s, having the following three properties:

I, The system (6) possesses an admissible solution (i. e., a solution
x(t) such that Box(O) * BTx(T) = 0), if, and only if,

T
@) | E(s) f(s)ds = 0 .
0
II. If (7) is satisfied, the vector function
T
(8) x(t) = [ G(t, s) f(s)ds
0
is a solution of (6) and is, moreover, the only admissible solution orthogonal
to every admissible solution of the corresponding homogeneous system.
111, Whether (7) is satisfied or not, x(t), defined by (8) is admissible.
Proof., Since n - k is the rank of BOX(O) + BTX(T), there is a k x n-

matrix (U and an. n x k-matrix 2}, both of rank k such that

“ a_[BOX(o) + “TX(T” = 0
and
(10) [8,X(0) * B X(T) 1B - o,

Here, of course, 0 < k < n, The gencral solution of (6), whether admissible

or not, is well known to be of the form
t -1

(11) x(t) = X(t)8 + f X(t) X(s) f(s)ds ,
0

where the constants of integration are the components of thc n-vector 8., The
attempt to find admissible solutions of (6) leads to the equation
Box(o) + BTx(T) =0, or

T
(12) (B,X(0) + BX(T)8 » [ uTX(T)X(s)'lf(s)ds =0,
0

for the determination of B8, On account of (9), this system of linear cquations
for the determination of B8 is consistent if, and cnly if,
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T
(13) [ o xmxs) sy =0,
0

which can be written in the form (7), if we let
(14) E(s) = OB X(DX(s)™ .

If (13), or (7), is satisfied, it is possible to choose g in infinitely many
ways so as to satisfy (12), Moreover, since the second term in (12) is the
integral of a known matrix function of s multiplied into the vector f(s), we
see that B may be chosen to be given by a similar expression; say

T
8 = [ P(s)f(s)ds
0

where P(s) is a suitably chosen (not unique) continuous n x n-matrix functin
of s, independent of f. Substituting in (11) we have

T
(15) x(t) = [ K(t, s)f(s)ds ,
0

where K(t, s) = X(t)[P(s) + X(s)-l] for 0<s <t and K(t,s) = X(t)P(s)
for t < s < T. The x(t) given by (15) always satisfies (6) but is admissible
if, and only if, (7) is satisfied.

We now wish to find another kernel matrix ¥K(t, s}, such that, upon
writing

T
(16) x(t) = [ X(t, s)f(s)ds ,
0

we can say that the x(t) given by (16) is always admissible and satisfies (6)
if (7) is satisfied, Since x(t), as given by 515) is admissible if, and only
if, (7) is satisfied, it is clear that (7) is equivalent to the condition

T
an / [BoK(0, s) + BLK(T, s)] £(s)ds = 0 .,
1]

Hence, if we set

K(t, ) = - U(t)[BK(0, s) + BLK(T, 5)] + K(t, s) ,

so that

181



PERTURBATION OF SOLUTIONS OF DIFFERENTIAL EQUATION>

T
(17%) X(t) = - u(r) f [ByK(0, 5) *+ BK(T, s)] f(s)ds + x(t) ,
0

then X(t) coincides with x(t) whenever (17), or its equivalent 7N, is
satistfied, This is true for any n x n-matrix function U(t), but the
following statement dJepends upon choosing U(t) in accordance with Lemma 1.
I'rom (17*),wec have

T
BUI(O) + B,I;(T) = - [BU(D) + BU(M] Iu [BoK(0, s) + B.K(T, s)]f(s)ds

- Box(O) - BTx(T) .

which, in virtve of (15) and the fact that [BOU(O) + BTU(T)] = I by Lemma 1,

must vanish, Thus x(t), as defined by (16), must always be admissible, _
whether (7) is satisfied or not, as we wished to prove., And, of course, x(t)
also satisfies (6) if (7) is fulfilled, because we already know that if (7) is
fulfilled X(t) coincides with x(t), which always satisfies (6).

Next we wish to find a kernel matrix G(t, s) such that the x(t) g}ven
by (8) satisfies the same properties as have already been specified for x(t)
as given by (16) plus the additional property that x(t) is always to be
orthogonal to every admissible solution of dx/dt = A(t)x.

Assuming that (7) is satisfied, every admissible solution of (6} can
evidently be written in the form

’
(18) x(t) = x(B T+ [ T, 9)f(s)es ,
0

where ¢ is a suitably chosen k-vector., This follows from the fact that the
columns of X(tlﬂ& form a complete set of admissible solutions of the homo-
pencous equations because of (10) and the fact that the rank of BOX(O) + BTX(T

is n - k, Lven when (7) is not satisfied, both terms on the right of (18) are
known to be admissible and hemce x(t) as given by (18) is always admissible.
We now show that it is always possible to choose ¢ so that

T
(19) [ By x(t)dat = 0,
0

in other words, so that the x(t) given by (18) is orthogonal to all the
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regardless of whether (7) hold_s_. From (18) and (19) we see that it is
necessary and sufficient for c to satisfy

T T T
't X(t)'X(t)’R T dt + ¢ oX(r)! K(t, s)f(s)ds dt = 0
IO B B fn;s IO

or

T T T
(20){f F3 X(e)'x(e)kde} <. -f ’g'(j X(t)'K(t, s)dt)f(s)ds .

0 0 0
We prove that the k x k matrix within the brackets { } is non-singular by
showing in the following way that it is positive definite, Let q be any k-
vector, Since )((t)-1 exists, {T = 0 if, and only if, X(t)Bq = 0. Since
28 is of rank k, this is possible only if q = 0, The quadratic form
AX(t)) ' (X(t¥¥)q_ in the components of q is the sum of the squares of the

components of X(t)§®q and is, therefore, positive definite (in the real
field), Hence

T T
[ aBx@xe@Bad =3 () Bxe) B d) g
0 0

is also positive definite, considered as a quadratic form in the components of
q. Thus we now know that (20) can be solved for ¢ in the form

T
(21) caf z(s)f(s)ds )
0

where E'(s ) is (for a given X(t, s)) a uniquely determined continuous kx n-
matrix function of s, independent of f. Substituting this value of ¢ in
(18), we finally arrive at (8) with

(22) G(t, s) = X() Qis) + e, sy

The G(t, s) just introduced by (22) thus satisfies all the requirements
of the theorem; so that the proof of the latter is now complete.

Lemma 2, The rank of the k x n-matrix m.BT is k.

Proof, Suppose q is a k-vector such that

(23) q Otsp=o0.

It is enough to show that g must be the null vector, for this would mean that
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the k rows of By would be linearly independent, thus implying that its

rank would be k, Multiplying on the right by X(T) we have EC[BTX(T) = 0,

And, since by (9) it is known that OzBTX(T) = - ONOX(O), we also have

TOB,X(0) = 0. Multiplying on the right by x()"}, we find that

(24) 50130 =0,

Multiplying(24) and (23) respectively on the right by U(0) and U(T), and
then adding, we obtain

T Ots,uco) + U] = 0

But, since, by Lemma 1, the n x n-matrix in the square brackets is just the
identity matrix, we see at once that qOU= 0; and, since the rank of the
k x nematrix Ol is already known to he k, it follows of necessity that

q = 0, as we wished to prove,

Theorem 2, The rank of Z(s) = m.BTX(T)X(s)'1 for each value of s on the

interval [0, T] is Kk,
Proof, This is a mere corollary of Lemma 2, since the rank of X(T) is n
and the rank of X(s)'1 is also n.

It should be noted that neither Z nor G are uniquely determined by the
requirements of Theorem 1, However we now prove the following

Theorem 3. Let li(s) be any continuous n x k-matrix function such that
T

(25) C=f E(s) H(s)ds
0

is a non-singular k x k-matrix. Then the G(t, s} of Theorem 1 may be
determined uniquely in such a manner that

T
(26) [ G(t, s) U(s)ds =0
[}
Remark, A possible choice for H(s) is Z(s)'. For, in this case, we have

|
C=f E(s) =(s)'ds ,
0

184



PERTURBATION OF SOLUTIONS OF DIFFERENTIAL EQUATIONS

which, since =(s) is of rank k by Theorem 2, is easily proved to be a
positive definite matrix and therefore non-singular,

Proof of Theorem 3, Let Go(t, s) be any kernel satisfying the requirements

of Theorem 1, and let R{t) VLe any n » k-continuous matrix function whose
columns are admissible, Thus, if we define

Gt, s) = Gy(t, s) - R(t) i(s) ,

It is seen that G(t, s) also satisfies all the requirements of Theorem 1.
If we choose

T
R(E) = (] Gy(t, s) U(s)ds) ¢F
0
it is easy to verify that (26) is satisfied, Moreover, this R(t} is
admissible because Go(t, s) satisfies Property II11 of Theorem 1,
Let ¢(s) be an arbitrary continuous vector function, and then set
T

£(s) = 6(s) - H(s) €1 [ E(2)e(zypdz .
4]

We easily see that this f satisfies (7), because of (25), Hence, from (26),
we prove that

T T
x(t) = [ G(t, s) f(s)ds = [ G(t, s) o(s)ds
0 0
If G*(t, s) were a second matrix kernel satisfying the requirenents of Theorem
1 as well as (26), we could also write
T T
x*(t) = [ G*(t, s) f(s)ds = [ G*(t, s) ¢(s)ds .
0 0
But x*(t) = x(t) because of the uniqueness statement under Pronerty I1, llence

T
[ [6(r, s) - G*(t, s)] o(s)ds = 0
0

for arbitrary continuous ¢. It follows that G(t, s) = G*(t, s), thus
completing the proof of Theorem 3.

Lemma 3, If BO and BT are n x n-matrices and if (BO, BT) is of rank n,
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.hen there exist n x n-matrices I"0 and FT such that

27} ByFy = BpFp = 0

and such that (FO) is of rank n, Moreover FO and FT are uniquely
FT

determined by these conditions up to a multiplication on the right by a common
non-singular matrix.

M- Since (BU’ BT) is of rank n, a suitable permutation on its columns
yields an n x 2n-matrix (C, D), where C is non singular, Then
(C, b) C'l D G} = DG'- DG = 0 regardless of the choice of the nxn-matrix G.
-G
Construct (F() ) by performing the same permutation on the rows of C-r DG
-rT -G

as that which when applied to the colums of (C, D) recovers (Bo, BT). We
thus have

F <, mfctoe «0,

ByF, - ByFr = (B, Bp) [Fy

00 TT

-I~T -G

which establishes (27) for the constructed F's. Morcover rank of F0 =
FT
rank ot (FO) = rank of [C1 D GY, which is surely n, if, and only if,
-|~.r -G

G is chosen to be non-singular, To see this, notice that any homogeneous

linear relationship between the columns of G holds also for the columns of

cloa.
Suppose now we had two pairs Fy, Fy, and T:-O' FT such that
BoFg - by = 0, BJF, - BF. =0, and with the ranks of both (ro) and(io)
Fr Fr

equal to n, Then the same permutation applied to the columns of (By, BT)
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and to the rows of FO and F) sends the equations

-F. -F.

(8, B)f Fg\= 0 and (B, Bp) FO = 0 into the equatioms (C, L) (E)=O
1. T \-6

and (C, D) (f = 0, These can be satisfied only by taking L = C'IDG and
-

1

DG. Since both F and 0 have rank n, we see as above that

E=C I
I'T }-T

both G and_G must be nor-singular. Hence E = EK, where K = ¢l

Since also G = GK, we see that

|
m
”

Permuting the rows of E Yand/ E\ by the inverse of the permutation last
-G -G

mentioned leads to the result that

Fy /Fol\,

-Tp \- Fr
1

where K = G°° G 1is non-singular. This establishes the last statement of the
lemma,

A continuous vector function x(t) defined on [0, T] will be
said to be adjointly admissible if x(O)FO + x(T)F, = 0, where the F's
satisfy the conditions expressed in Lemma 3. As a consequence of this lemma
it makes no difference as to which particular F's are chosen, A change in the
F's only amounts to replacing the last written equality by the equivalent
relation [x(0)Fy + x(T)Fp ]JK = 0, where K is non-singular,

Theorem 4, The rows of 3(t) are adjointly admissible, In other words,

(28) E(O)FO * E(T)l-‘T s 0,

Proof, We note from (9) that OIBTX(T) = -OlBOX(O). Hence, from (14),
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3(0) = OlaTx(T)x(O)’1 LI WOX(O)X(O)'l . ouso, so that

29) 2(0) = - OLB() .

Also, form (14}, it is obvious that

(30) I(T) = + OIBT .

Hencé, from (29) and (30), we see that E(O)l-‘0 + E(T)FT = - O(BOFO - BTFT)'
which, by Lemma 3, must vanish. This establishes (28) and finishes the proof.

Theorem 5., The rows of E(t) constitute a complete set of linearly
independent adjointly admissible solutions of the homogeneous linear system

(31) af/dt = - g A(t)
which is adjoint to the system dx/dt = A(t)x,

Proof, It is well known that the rows of )((t)"1 satisfy (31), Since the

rows of Z(t) = CZBTX(T)X(t)'l, cf, (14), are merely linear combinations of

the rows of X(t)'l, the rows of Z(t) must also satisfy (31), In Theorem 2,
it was proved that the k rows of Z(t) are linearly independent; and, in
Theorem 4, it was proved that the rows are adjointly admissible, Hence
Theorem 5 will be completely proved as soon as it is shown that k is the
maximum number of linearly independent adjointly admissible solutions of (31).
This is most easily done by noting that the relation between a system and its
adjoint is a reciprocal one, The adjoint of the adjoint of a system is
obviously the original system, The same may be said about admissibility and
adjoint admissibility, A vector function which is adjointly admissible
relative to the adjoint boundary conditions is admissible in the original sense.
Hence, if there were k' (> k) linearly independent adjointly admissible
solutions of the adjoint system, Theorems 1-4, applied to the adjoint system
with adjoint boundary conditions, would tell us that there would have to be at
least k' linearly independent admissible solutions of the original system
dx/dt = A(t)x, But we already know that there are just k of them, This
completes the proof,

III. BIFURCATION EQUATIONS

Our method of solving the problem formulated in Section I involves the
preliminary solution of the system of integral equations
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T
(32) x(t, ¢, w) = X()Bc + [ G(t, s)flx(s, ¢, w), 5, ulds .
0

for the unknown function x, The solution will depend not only on t but
also on the parameter u and the k-vector ¢, Since G 1is bounded and the
partial derivatives of f with respect to the components of x are contimmas
and vanish when x and u do, it is almost self-evident that the following
system of successive approximations

x(t, © 1) = X(t)Bc

must, if |u| and ||c|| are sufficiently small, converge uniformly to a
solution x(t, ¢, u) such that x(t, 0, 0) = 0, Further details of the proof
are indicated in a previous paper, The Role of First Integrals in the
Perturbation of Periodic Solutions, Annals of Mathematics, volume 63 (1956},
pp. 535-548, especially p. 545. Although in this previous paper only periodic
boundary conditions were considered, the proof in the present more general
case (in so far as it concerns the existence of solutions) is exactly the same,
The main feature is that f must be Lipschitzian with arbitrarily small
Lipschitz constant, if |u| and |[|x|| are sufficiently restricted, because
of the above mentioned properties of the partial derivatives of f, Assuming
then that equation (32) is solved and that the solution is continuous (as it
would have to be because of the uniform convergence of the continuous
approximations), we are in a position to proceed to the next theorem.

Theorem 6, Let x(t, ¢, u), where ¢ is a k-vector, be a continuous
solution of (32) such that x(t, 0, 0) = 0, Then

(33) Dox(O, c, u) + BTX(T, c, u) =0

and x(t, ¢, u) will satisfy
(34) dx/dt = A(t)x + f(x, t, w) - H(t)a ,

where the relationship between li and G is as in Theorem 3 and where the k-
vector a is given in the following formula:

T
(35) a=ale, w =Cl [ B, ¢ W, t, wld .,
0
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Proof, Let f(t) = f[x(t, ¢, u), t, u] = H(t)a(c, u)

T T
o E(8)f(s)ds = [ E(s)f[x(s, ¢, ¥), s, ulds
0 [

T T
- (f = [ EElx(t, ¢, W, t, u]dt
0 0

T
= 0 since C = [ E(s)H(s)ds as in Theorem 3,
0

Hence the condition (7) is satisfied by the above defined f(t). Hence the
second term on the right of (32) satisfies (34) and is also admissible. Thus
(33) is also satisfied, The first term on the right of (32) satisfies

dx/dt = A(t)x and because of (10) also satisfies (33). It is evident then
that the sum x(t, ¢, u) must have the stated properties,

It is clear from the theorem just proved that, if ¢ = c(u) can be
chosen as a function of p in such a way that

{36) ac, u) = 0,
then the differential system satisfied by x(t, c(u), u) 1is the system
dx/dt = A(t)x + f(t, x, u) obtained from (34) and (36}, Since the given two
point boundary condition is also satisfied because of (33), it is seen that
this  x(t, c(u), u) solves the problem formulated in Section I.

Thus the problem has been reduced to the problem of solving the system
(36) of so-called bifurcation equations, This is generally very difficult,
But, in case the differential equations admit some first integrals the
bifurcation equations can be put into another form, We investigate this
procedure when the number of first integrals is just equal to k.,

Suppose that ¢[x, t, u] is a k-vector, cach component of which is a
first integral of the system dx/dt - A(t)x + f(x, t, u), Therefore,

¢, (x, t, ¢, WA(t)x + f(x, t, u)] + ¢ . (x, t, u) =0,
Letting x = x(t, ¢, p) and then integrating we get
T

I Qx(x(tu €y B, t, ¢, U)[A(t)x(t: C, W)+ f(x(to c, u), t, U)] dt «+
0

r
[" o x(t, ¢, w), t, widt = 0,
0
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On the other hand we have by the fundamental theorem of calculus

$[x(T, ¢, W, T, u] - ¢[x(0, ¢, W), O, u] =

T T
[ e (x(r, ¢, Wx(t, ¢, wdt « [ ¢ (x(t, c, W), t, Wdt,
0 0

Hence, by subtraction, we find that
6[x(T, ¢, W), T, u] - ¢{x(0, ¢, w), 0, u] =

T
- Io 8, (x(t, €, W), t, WIX(E, €, w) = ACE)X(t, ¢, u) - £(x(t,c,u),t,u)]dt
T
= - fo 8,(x(t, o, w), ¥, u) H(t) ale,u) 4t by (34) .

We suppose that the components of ¢(x, t, u) are independent first
integrals at least for the solution x(t, 0, 0) = O, This amounts to assuming
that the kx n-matrix ¢_(0, t, 0) has rank k, It is natural therefore to
dispose of the arbittarine§s of the n x k- matrix H(t), introduced first in
Theorem 3 and used again in Theorem 6, by setting its transpose equal to
¢x(0, t, 0), at least provided that

T
C=[ =(s)H(s)ds
0
turns out, for this choice of I, to be non-singular. Since therefore
ox(O, t, 0) = H(t)' and since
T
[ H(E)' H(t)dt
0
is obviously positive definite so that it is, a fortiori, non-singular, it is
seen by continuity that the matrix
T

I Qx(x(tp c, u), t, wH(t)dt
0

must also be non-singular for sufficiently small |[c!| and [|u].
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It now follows from the last equality that the so-called "bifurcation
equation", a(c, u) = 0 is equivalent to the equation

¢[x(T, ¢, w), T, u} - ¢{x(0, ¢, w), 0, u] =0,
at least if ||c|]| and |u| are sufficiently small.
In the periodic case where ¢(x, t, u) = ¢(x, t + T, u) and
x(0, ¢, u) = x(T, ¢, u), the above result shows that the bifurcation equatiors

are identically satisfied, But this happy circumstance apparently need not
occur in general,
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SUMMARY

The derivatives of a function of a function have been automatically
computed applying the recursive Schlomilch-Cesidro formulation, Tables
given for this purpose in collections of mathematical formulas were thus
extended up to the eighteenth order.

Then, the general expressions thus obtained were used to construct
the power series expansions in the time variable of those powers of the
radius vector which appear most frequently in celestial mechanics,
namely, the force function, the force of attraction, and the derivatives
of the force function with respect to the coordinates. These last expres-
sions are given in terms of the radius vector evaluated at origin and the
triplet of Stumpff's local invariants. The explicit expressions of these
series were symbolically computed using the FORMAC language.

INTRODUCTION

The need to compute the Taylor series expansion of a function of
a function arises frequently in celestial mechanics. Even though by the
standards of this discipline the computation of such series is an ele-
mentary problem, there is no doubt that its actual computation, if carried
out by hand and to a high order, can be very tedious and time-consuming.
This seems to be a case, therefore, where a computer programmed to
perform symbol manipulation could relieve the scientists of this heavy task.
We present here, first, a general algorithm given by Schlémilch and Cesaro
to compute the derivatives of a function of a function in a recursive mode,

* This report presents part of the work being performed under contract
NAS 12-87, "Automatic Symbol Processing Techniques."
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(1]

This algorithm was programmed in FORMAC and was used to

compute the derivatives up to the order n = 18. Then, these general

-k
results were applied to obtain the expansions of r (t), where k=1, 2, 3.

FAA di BRUNO'S FORMULA

Let

(1) u(t) = ul vt ]

be the function which we want to expand in Taylor series:

o el o] el

Then, the goal of the computation is to obtain explicit expressions for

=3
8

the coeificients c - For small n they are

¢ = [ Qu S!]
. dv ~ dt
=0
(3) o = = d—§+ du a’v
27 21 d v 2
dt “t=0
C-l_[d_ _3+3dz_ud_v£z+d_u&]
3 3! 3 dt dvz dt dt dv dt3

t=0

and it is immediately evideut that the amount of work required to obtain
higher order derivatives increases rapidly with the order n,

In spite of the complexity of this process, Faa di Bruno[2 ] has
given an elegant and concise formula for the nth derivative of a function

of a function:
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2

.5 n! dPu (l_d_v\),'l_ d 5 (1 d‘v>
T ] ' 1
I U TR I T \z e -

k
(4)

Q-IQ-
=

where the summation sign extends over all the integer solutions of

(5) i+2j+... +tk=n

while, simultaneously, it is:

(6) itj+... +k=p.

The compendiousness of (4) makes it very adequate for theoretical
work, for instance, to establish bounds, but it has little practical value
for the actual computation of explicit expressions, particularly when high
order derivatives are required. In effect, the most extended tabulations
that can be used for this purpose, namely, those of the 7- and M_-numbers

3 [3]

in table (24.2) of a well-known collection of mathematical formulas ,

give these numbers up to n = 10, while in two different applications to specific

[4]

problems of celestial mechanics by Musen in perturbation theory and
Szebehely[5 1 in the restricted three-body problem, it has been found
necessary to compute these explicit expressions up ton = 8. It seems
likely that in future investigations a much higher order of approximation

might be required.

SCHLOMILCH-CESARO'S FORMULA

For n)10, then, there is no way of avoiding a lengthy and tedious com-
putation. This appears to be a case in which a computer, adequately
programmed, could take the burden of the long literal developments thus
relieving the mathematician from this uninteresting task.

While reviewing old and new mathematical literature on the subject of
high-order derivatives of a function of a function, we have found a re-

cursive procedure which adapts itself very well to being programmed in
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FORMAC., We will call it the Schlémilch-Cesaro formulation

6]

because it can be found in the mathematical works of both authors[.

According to this method,

& n
(7N —:‘ =Y b P,
dt vE] '
where
\
dv

and Pn v is a polynomial in the powers of

(9) a, = —

- - = . +
(10) Pty 3 Pay t O PoL (v=1,2,..., ntl)

which should be supplemented by

(11) Pnﬂ,o = 0, Pnﬂ’v =0 (V) nt1).

Noticing that for n = 1 there is only one polynomial
(12) P =a, = — ,

1,1 i dt

we obtain successively for the first five orders:
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(13)

checked against the above mentioned tables

3<11 a (n=3)

5

5a1a4+ 10a2a3
10a 2a + 15a.a
173 1

3
100Ll az

5
a4y

This procedure has been used to generate Pn y UP ton=18,
,
at which value the numeric coefficients become too large to be computed

in exact integer form. The polynomials for the first ten orders were

3]

and were found to be

. . * .
identical. As examples of the extension of these tables, we present

* Jordan [7] gives the number of terms in all the polynomials P,

using Netto's notation I'( /n). In the table on page 155 of reference [7],
T'( 710) is given as 43, while our results and those of reference [3]
indicate that the number of terms is 42.
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in the appendix the polynomials P“’v and PIZ,V'

It is worth mentioning that these polynomials have a remarkable
property: the sum of the coefficients is equal to the Stirling number
of the second kind S(:). Thus, in the process of generating these
polynomials, one also generates, as a by-product, the Stirling

numbers.

APPLICATIONS

The method expressed in formulas (7) through (13) can be advan-
tageously applied to computations frequently occurring in celestial
mechanics. We show here with some detail its application to the
construction of the time power series for the inverse square of the
radius vector in the Keplerian motion along any conic section. In
this case, r is a function of t through the Cartesian coordinates x,

¥y, z. We take

1

(14) u =
(1)

Then, we have

"
o du V(Vv+1)!
(15) D, = VAR SR Maaveray)
dr r
Introducing Stumpff (8] local invariants u, 0, ¢ we have the following
expressions[c)] for the time derivatives of r(t):
a = r GJ
1 0
(16) R
a, = ro( -0 +e€)

* Polynomials of higher order (n {18 ) can be requested from the authors.
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3
[l

ro( 303 - ou - 30¢)

2 2
ro(-1504+702p+ 180 € -ue -3¢ )

2
. = r0(10505 - 6003# - 150035 +tou + 450¢ 2 + 24uce )

(16) a

i

133
I

where r0 is the initial value of r.

The polynomials Pn v can, thus, be expressed in terms of the
triplet u, 0, ¢ substituting (16) into (13). Then, taking into account

(15) it is easy to obtain

1 / du 2
nla)=-=°
0 0
2
1 du 1 2
5 () Lot o)
t r0
1 d3u 1 3 1
an 353 )= = 5 (8- Jou-a0c)
dt r
0
1 d4u 1 4 19 2 2 1 2
F((i?): ?<160-1—20u—1205+1—2ue+e>
0
1 '/d5u>— L /3205 2—103 -3203 +1—o 2+602+—ua
5'\dts"rz\ T2 % € T oo T FogHae
0

Expressions for terms of higher order are presented in the appendix,
together with the corresponding terms for the inverse and inverse cube
of the radius vector. All these expressions were produced by a single
FORMAC program. The numeric coefficients were computed in exact
form using rational arithmetic. These computations were truncated at

n = 14, because overflow occurred while generating the numeric coef-

ficients for the following term., These same computations have also been

performed in floating point form; in this case it is possible to compute
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the first twenty terms of these series. The expansions of any

power of the radius vector could be obtained using this program.

-2 R
The time power series for r  can be used to obtain directly

the true anomaly through the integral of areas for any value of the

1

time within the radius of convergence. The series for r~ and

e3 can be applied to obtain the power series solution of the three-

body problem in the time domain,

d[lO]

The series for r-z has also been applie to the computation

of ephemerides in the case of nearly parabolic orbits,
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APPENDIX

Table 1

Polynomials P“’ v

| =
; Pl %11
’ = + +
P“’2 llo.lon10 55a2a9 + 165a3a8 330<>L4c7.7 + 462a5a6
2
= Z
P“’?’ 55a1a9 + 495ala2<x8 + 13200,10.3(17 + 3100L1cx4cx6
+ 1386 az + 990(120. + 46200 + 6930a._a a
%1% 7 3% M

+ 5775a.0° + 46200
o %30s

P = 165(1':’(1

2
1.4 + 1980afaa + 4620a a0, + 6930a2aa

8 277 17376 17475

2 2
+ 2
+ 17325(;n1cxza4 + 6930ala2a6 7720<1lazon3<15

4 + 23100<xlcx2a + 6930a§a

2
N + 34650a2a30.

3
+ 15400(’1.2(13

5 4

3 32
+ 9240alaa + 5775(11(14

4
P = 330alcc 25

3
11,5 + 4620cx,l(12(1

7 6

23
+ 69300(1?0. ad, t 20790a?a2a + 15400(1.1(13

27374 275

22
+69300aa2<1 + 34650a1a3a + 17325a§a3

1 3 274
5 4 4 3 2
= 2 2
P“’6 46 o e, + 6930a1a2a5 + 11550a1a3a4 + 46 00a1a2a3
32 23 5
+ 34650ala2a4 + 69300a1a2a3 + 103950nlonZ
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6 5 52 42
= 62 Qa
P“',’ 4 alas + 6930ala2a4 + 4620 a1a3 + 34650 a0,

34
+ 17325
4%

P“’8 = 330@?0.4 + 4620 oni"onzcn3 + 6930a‘;’a;
P“’9 = 165(1?(13 + 990aZa§
Pll,lo 55ala
Pl “il
Table 2
Polynomials plZ,v
Pia,i 5 %12
PM’Z = lZalcx“ + 660.2&10 + 2200.3&9 + 495(14(18 + 792a5a7
+ 462 ai
P12,3 = 66 afo.lo + 660 a8, + 1980 e 3960 0,0,

2 2
+ 5544ala5a6 + 1485 aag 7920 1,00, + 8316 a,a.

2 3
+ 75
+ 13860 a0 + 9240 a, + 27720 aa 8. 57 a,
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12,4

12,5

12,6

12,7

3
220 ala9

8

+ 8316(1:1 + 55440 a 0.0,

175

2 2
+ 11880a.aa, + 55440(110.3&5

17277

1727376

3
+ 13860 aa, s
+ 138600 CLZ + 15400 a4
i ot 3

4
495 alons

22
+ 166320 aza aa. + 41580 5,0

+ 7920 G.3c1 Q,

17277

1727375

22
+ 138600 L 0a,

3
+ 83160 0,8,

79Za5a + 13860(1‘11a0n

177

2 2
+ 2970 alazc. + 7920 ala3a7

+ 83160 a1a2a40.5

3
+ 184800 ala2a3

4
+ 51975 (12(14

276

+ 69300 o0 az

+ 18480 c.3a a

6

374

+ 83160(120,(1 + 51975&.2(12

274

136

2
+ 13860 00

+ 27720 <130, Q

1745

2 2
+ 103950(11(12&4

+ 415800 alazcx3a4

3 2

+ 138600

32 3
+ 83160(10.(1 + 277200a1a2a3a4

17275

222
+ 415800 ala2a3

6
+ 10395 a,

6
924 oa

+ 103950aa2a + 277200 a

1274

5
+ 16632 alazas

4
+ 27720 CLICL30.5 +

23
+ 207900 ala2a4

205

b—'w

30,
%3

%3

33
+ 61600 a0,

4
+ 207900 ala2a3

25
+ 62370 alo.z

5
+ 27720cc1m3u4 + 138600a

4

42
17325 a1a4

o
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+ 13860 afa a4 + 9240 afaz

7
P = 792 ala 5 5

5

4 4
+ 51975 cclaz

2
+ 83160 Cx?a

2%3

8 7 63
P12,9 = 495 ala4 + 7920 ala2a3 + 13860 a o
9 82
2
Plz,lo 20a1a3+ 1485(11(12
10
P11 = obapq,
12
P21z o
Table 3
wrar ()
= 4 (1
" S Ul
1 - i,
T
1 € 2
2 G
1 /3 U 3
3 ;<—£U+gc——0)
1/ ¢ 15 2 3 2 5 2 35 4
4 :(a“-4‘°+§"§“°+?°)
s 1 s 3B 152, 1 3 kb 635
r (- g5 emo 47 T ot g - 15 8
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¢ L2 2 2 315 4 3 2 . 10522
r \ 10 ¥ 720 X 16 40 ¢ H 16
5 3 35 4 7 22 231 6
- 1—65 - 8 HO + —8-6/.46 + ——1 )
1 3 7 2 9 5 459
— - = ol + —_
7 r\T 3 560 K9t 76 0 T g M0
35 203 35 3 165 5 1 23 “30
- 16 16 16 16 * 5040
429
- —0J
6 ° )
1 /2871 4 195 2.2 ¢ 3 3003 6
8 r Tz #% T @ H% t ggazg T 330
4131 2 2 27 22 3465 2.4 _ 459 3
896 < M Z4g0 ¢ H 64 1480 ¢
_ 315 32 35 4 3003 6 209 24 17 32
32 128 1z8 128 ¥ z6g8 M
6435 8-
* 138 )
1 1000 5 1199 2 3 e 3 6435 7
9 ?( 16 M9 T THog K9 - o3gg MOt 3e0
, 4345 2 3 929 22 9009 25 _ 635 3
224 H° T B0t M 64 T 504 ‘K
, 1155 33 315 4 5005 7 _ 1001 25
32 128 96 “ 19z H
‘ 4
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By J. Vagners**
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Seattle, Washington

SUMMARY

¥ K K K X X ¥

In this paper semi-analytical results are presented for the long-term
behaviour of close lunar orbiters, The Moon's aspherical gravity field is de-
scribed by spherical harmonics through J4'4 and the Earth is idealized as mov-
ing in a circle in the lunar equatorial plane. After the short- and medium-
period terms have been removed from the Hamiltonian, the long-period motion is
analyzed from equi-energy trajectories in the eccentricity-argument of peri-
center plane. Stationary, or resonant, solutions to the slowly varying equa-
tions of motion are determined numerically and the results presented as varia-
tions of (critical) inclination and eccentricity with semi-major axis, These
computations are based on two sets of preliminary values of the lunar harmonics
Jn,m recently published by sources in the United States and the Soviet Union.
Representative equi-energy contours are presented to illustrate the evolution
of the long-term motion as influenced by orbital inclination, semi-major axis
and the parameters Jn,m- Many stable orbits, in the sense of not impacting the
Moon, are found even for high inclinations.

Introduction

In the analysis of near-earth satellite motion the dominant perturbation
is the oblateness Jg, of 0(10'3)¢, with all other (gravitational) perturbations
of at most 0(10'6), or second order in Jy. As can be shown 1), to first order
the Hamiltonian contains only short-period (periodic in the mean anomaly) and
secular terms. These characteristics allow an analytical solution by succes-
sive approximation wherein, to any desired order of accuracy, the equations of
motion are reduced to trivial quadratures.

This situation changes significantly when we consider the motion of a close
lunar orbiter. The ratio of the mass of the Earth to the mass of the Moon is
roughly 81 to 1. Consequently, when the orbits of a lunar orbiter and Earth
orbiter are geometrically equivalent, the perturbation of the Earth will affect
the lunar satellite 812 times stronger than the Moon will affect the orbit of
the Earth satellite. From the early lunar orbiter flights it is known that the
oblateness of the Moon is of 0(10-4) and that the higher harmonics Jn.m in the
lunar potential may be as large as 0(10‘5). Hence, neither the Earth,influences

* This work was performed in association with research sponsored by the National
Aeronautics and Space Administration under Research Grant NsG 133-61.

*¥The research was performed while the author was at Stanford University and is
a part of his Ph.D, Dissertation.
The central force field is taken as 0(1).
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nor the higher harmonics are of second order in Jy. In fact, as the semi-major
axis of the satellite increases above two lunar radii, the Earth influences ex-
ceed, and eventually dominate, the oblateness effects. The result is that the
variable part of the (slowly-varying) Hamiltonian is factored by small para-
meters of (roughly) the same order of magnitude so that successive approximation
schemes fail, Nevertheless, several of the approximation steps may still be
taken and then many significant features of the long-term motion extracted with-
out actually integrating the equations of motion,

In modeling the lunar orbiter problem, I will make the following assump-
tions:

. The Earth moves in an apparent circular orbit in the lunar equatorial
plane; the actual apparent orbit is inclined about 6°41" (19') to the
lunar equator and has an eccentricity of about 0.055.

. The Earth is spherically symmetrical and hence can be represented by
a point mass.

. The lunar gravity field is described by spherical harmonics through
J4 4; at the time of this paper no estimates of the higher harmonics
)
were available,

. Solar radiation pressure and solar gravity field effects can be ne-
gl .cted.
. The physical librations of the Moon can be ignored.

Since for close orbiters the neglected terms contribute small 0(10°7) perturba-
tions or less, the following analysis should providc the correct gross behaviour.
The only exceptions might prove to be the third and fourth assumptions; radia-
tion pressure probably significantly affects the results if one considers orbit-
ers of very high area-to-mass ratio, for example dust, The other, more general,
invalidating factor might be the higher zonal harmonics J,, n > 5.

Long Period Equations of Motion

In keeping with the assumptions on the apparent Earth orbit, I will take
the reference plane to be the lunar equatorial plane with the zero-meridian to-
ward the Earth., In terms of luni-centric coordinates the potential field of the
Earth is expressed as follows

; 2
szi 1+(”—> P,(s) (1

r.
E g
where pg is the gravitational constant of the Earth, rg is the {constant) luni-
centric distance to the Earth, s is the direction cosine of the luni-centric
angle between the satellite and the Earth, and P2 is the second Legendre poly-
nomial. The direction cosine s ~can be expressed in terms of orbital elements
as

s = cos(u + § - OE) - 2 sin® i/2 sin u sin(OE -0) (2)

where ()} is the longitude of the ascending node, QE is the mean longitude of the
Earth, u is the central angle and 1 the inclipation.
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Following the device of Kozai(z), I define a set of modified Delaunay vari-
ables as follows:

L= Vi 4 = mean anomaly
. (3)
v 2 i
G=LV1 - e g = argument of pericenter
H=Gcos i h =

- g

where E,g,h are canonically conjugate to L,G,H and e,a are the eccentricity
and semi-major axis respectively. The associated Hamiltonian is

2
n

H--% - H
2L2 nEH + - + VE (4)

where ng is the (apparent) Earth mean motion. The term T, ﬁ n incorporates
all of the lunar gravity anomalies described by the gravity coeff1c1ents J

The complete explicit form for all n,m is not of direct interest here; 1t may
be found in Refs. 3 and 4. Under the assumption that the Earth orbit is circular
and in the lunar equator, no angular variables other than f/,g,h appear in
Inclusion of Earth eccentricity and inclination would introduce angles such as
the node and the argument of pericenter of the Earth orbit.

In general, the Hamiltonian (4) will contain the following types of terms:
a) secular terms, depending only on L,G,H due to even zonal harmonics and the
Earth, b) long-period terms (periodic in g) due to 21l zonal harmonics and the
Earth, c) medium-period terms, with periods of a month or fractions thereof,
arising from the tesseral harmonics and the Earth, and finally d) short- or f-
periodic terms from all sources., For the present problem the short- and medium-
period terms may be removed from the Hamiltonian via the von Zeipel method(l)
The process will not be given here, since it is aI%ebra1cally involved, although
straight-forward, and may be found in Oesterwinter 5) and Giacaglia(6), It may
be noted here, however, that the referenced results are incomplete in view of
the presently estimated magnitudes of the higher J, m [0(10 5)] In the quoted
papers only the J2, J2 o and Earth short-period and only J2 2 and Earth medium-
period terms were spec1f1cally determined. For the present purposes, I assume
that all of the short- and medium- period terms have been removed leaving only a
slowly varying Hamiltonian,

In the literature, the roles of the canonical coordinates and momenta are
interchanged by considering the negative of the Hamiltonian, denoted by ¥,
and hence referring to § as the Hamiltonian. I shall adhere to this (by now)
well-established convention. With the understanding that all elements are
slowly varying, the Hamiltonian can be written as (4):

uz 1 1 2 n: L4 GZ Hz
§¥= —5 +ng eI, 3135 )y (-3t
2L 16 G 16 g L G
2 2 33,8 2
3
+15<1-9§ 1-% - :g [(35 sin4i-4OSin2i+8)(1+%>
L G 64G'L
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5
2 3 J3hq 2
-5 (1 - 7 cos“i) e“sin“i]| - s 3 e sin i (1 -5 cos“i) sin g
8G L
r © 2 4
1B uedy 5 o 2, 15mglL 62 i\ . 2
| =5 ¢ sin'i (1 - 7 cos®i) + ——|1-F) {1 -5 ) [sin%e
32 G L 8 Mq L G
(5)

In Eq. 5 the Kepler elements e and i have been used as a convenient shorthand
for the more involved canonical counterparts and the mean lunar radius R =
1738 km has been taken as the unit of length,

Since &* is independent of time, it is a constant as are L and H since
neither £ nor h appears in ¥*. Thus we have a single degree of freedom
system described by the differential equations

L8
? (6)

. §*

“° 5

1}

Since the integral 4% = constant is also known, the problem, in principle at
least, is solved. The known integral could be used to eliminate one of the
variables and hence g,G would follow by quadrature. However, it can easily
be ascertained that the solution cannot be found in terms of known functions.
In the von Zeipel treatment\l) of a near-earth orbiter whose inclination is not
to close to critical, the long-period fluctuations were removed from $* at
this point by a (further) canonical transformation and the problem reduced to
trivial quadratures. Such a procedure fails in the present case as both the
secular and g-dependent parts of the Hamiltonian have (essentially) an 0(10'4)
multiplier. This can be deduced from (5) by noting that the multiplier of the
Earth contribution, containing secular and cos 2g terms, has the factor¥ (nE/
n')2 after division by ug/ZLz; this factor is a quantity of roughly the same
order as J2.

It proves convenient for numerical calculations to introduce the parameter
7 and constants of the motion B,ai, defined by:

, 2
G 2,4 2
- R (7)
L 2
L
and
2
o 222 [n
2 2a2 np
2
3J3 n'
%= 73 \n,
4a E
£ 1 _ ;
n = @, the satellite mean motion.
3
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o _3 7, <£ >2
4 162 \"E (8)

which are dimensionless since Ry has been chosen as the unit of length. Com-
bining the constant parts (independent of g and G) with §* and some alge-
braic manipulation yields the "energy integral" in the form:

n y

1 2

c=an (- e+ He w3 - en’) - ganT 3 2 [35(1 )

-a0(1 - B0 %) & 8] (5 - an?) - 5(1- 78021 - D)1 - Bn'2>2

-5 2% -2, -2 15 2,
-e.n (1-95 -8 (1 -5Bn") sing - 3= (1-n7)
-2 4 -7 -2 2
. (1 - By )[50147] (1 - 780 )+1} sin‘ g (9)
where 2 5
2“@ o* “‘q
) ¥ - — - nEH
EL 2L

The form chosen here is such that if as and 064 are taken as zero, one re-
covers (essent1a11y) the results of Kozail2

The equations of motion corresponding to this energy integral are deter-
mined by differentiation of (5) according to (6):

* 3u J
_le 1 < 3 . - -
"=L6=T 3% 5L ) 12,5 [(1 ) - e )] (1-3%n0") cos g
J rL: az
51 - P - e %) | —E (- 7B %) ¢ Eo— fsin (10)
43" Q
* 22
. ¥ 3k 2 Znga 59, 6 4
g = GZL_iz—( - 5B) + ™ -m[q + 7(28 + 1)y
I3 5 . 2 2 PR
- 63(p% + 28)n -2316] 75 1~ (™ -ss)[(l-n)(l-an )}
2a 1 n
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“ g 5J
_(Z-Sﬁ 32—5 (n® - 1s8) |1 - 7 : 4
2 2| *P 2 Z sin g + 5 12
n 1-n n n - B 8a T
/ \
5nza2
. [5n6 - (568 + 7)r1‘1 + (63[32 + 72B)q2 - 77{52] + Ea (B - q4) sinzg
KoM
<4
(11,

Geometrical Solution

Since it seems highly unlikely that a general solution in terms of known
functions can be found to the system (10) and (11), I will attempt to obtain the
general characteristics of the motion indirectly. From the known energy inte-
gral (9) it is possible to construct, with the aid of a computer, equi-energy
contours in the nz - g plane for given values of the semi-major axis a and
(angular momentum) parameter f. The form of the contours is also strongly
dependent, for low a, on the values of the harmonic coefficients Jo, J and
Jg4 as noted earlier these values are not very well known at the time of this
writing.

From preliminary analysis of the U.S. lunar orbiter datai the following
coefficients are available

J, = -2.3691 x 1074
-5
Jy = 3.366 X 10
-5
J, = -1.368 X 10 (12)
(7)

Another (preliminary) set, as determined from the U.S.S.R. Luna 10 flight''’
is

J, = -2.06 X 107?
g, = -3.62 X 107°
-5
J, = 8.33 X 10 (13)

The agreement as to the value of Ja is not too bad; the U.S. value is closer to
that determined from the physical libration of the Moon (-2.41 X 10-4) than the

tResults presented at Guidance Theory and Trajectory Analysis Seminar, NASA
Electronics Research Center, Cambridge, Mass., June 1967, by W. T. Blackshear,
et al. of Langley Research Center.
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U.S.S.R. value., As for Jgj, the signs are different, although the magnitudes
are fairly close, as is also the case with J4. In view of these facts both
sets of coefficients were used in determining typical "phase plane” (nz, g) con-
tours, thus in some sense indicating the sensitivity to, as well as dependence
on, the values of the J3 and J4 harmonics,

With the motion constrained to a given energy curve, by plotiing equi-
energy contours we can obtain the qualitative and quantitative long-period be-
havior of g and eccentricity (or inclination). The time history on the con-
tours can be obtained very rapidly via numerical integration of (10) and (11)
for any contour of interest.

Before presenting some representative contours, note that for each value
of the semi-major axis there is a maximum allowable eccentricity in order that
the radius of pericenter remains greater than the radius of the Moon, This con-

dition is simply epax = Eil, or in terms of 1§

2 2a - 1
Terit = a2 (14)

For convenience, this relationship is shown graphically in Fig. 1, All equi-
energy contours in the n2 - g plane are terminated at n{,jt since the cross-
ing of the ngrit line by any contour implies lunar surface impact.

In Figs. 2 through 7 typical nz - g contours are presented; Figs. 2, 3,
4 were obtained using the Langley J, values, Figs. 5 and 6 were obtained for
the U.S.S.R. values., In Fig. 7 the set of elements corresponding to the U.S.
Lunar Orbiter IV initial elements was chosen and the corresponding trajectories
were also computed via numerical integration of the long-period equations of
motion. The numerical integration points are given at 30-day intervals to in=
dicate the relative rates of nz, g on various parts of the contours, The
maximum possible lifetime available for the parameters of Fig. 7 is roughly
3.5 years; the appropriate contour is indicated on the figure,

Inspection of the contours reveals several major features:

. Stationary points with surrounding librating orbits where g is
constrained to vary between (some) limits.

. Circulating orbits where g increases through 27.

Impacting orbits resulting from either circulating or librating
orbits.

From these observations and Figs. 2-7, one can deduce that stable, or surviving
orbits are possible even for high inclinations if the initial conditions are
chosen (sufficiently) near one of the stationary solutions.

I will, therefore, defer some additional comments concerning the n2 - g
contours until the nature of the stationary solutions has been investigated in
the next section, Only stationary points for libration orbits are depicted in
Figs. 2-7; one might ask if there are any other types of stationary solutions
possible, Stationary, "saddle-type' points are also possible, but were found to
exist only for 12 less than q%rit' ji.e., under the surface of the Moon. An
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example of contours illustrating the different types of stationary points and
contours is given in Fig. 8, In this figure only the interval 0° <g <« 90° is
shown; the contours for -90° < g < 0° are similar but not symmetrical about

~ = n°
s =0

Stationary Solutions

The stationary solutions are defined by ﬁ = é = 0 and correspond to re-
sonances in the critical inclination sense, i.e., commensurabilities of the
anomalistic and nodal periods. In the near-earth satellite problem where J2
dominated all other perturbations, and hence the nodal regression rate, one
found resonance at the critical inclination of +63.4°, As the semi-major axis
of the orbiter is increased and the luni-solar perturbation effects increase,
coupled with the decreasing rate of the node due to Jg, one finds additional
resonances emerging. For example, in an investigation of high-eccentricity,
sun-perturbed orbits around Mars, Breakwell and Hensley(8 find eleven critical
inclinations (resonances), all above i = 40°, The analysis of Breakwell and
Hensley is inapplicable in the present case since it assumed that Jo of Mars
dominated the Sun perturbations, whereas in the lunar orbiter problem o, J3.
J and (nE/n'\2 are all roughly the same for close lunar orbiters. Character-
istic of these resonances are the assoclated large fluctuations in eccentricity
and the inclination.

Digressing, we note that the physical reality of such resonances was per-
haps first verified by Explorer VI, launched August 1959, whose elements were
i =47.1, a =4.35Rg, e =0.76, placing it very close to the critical in-
clination(a) of 46.4°. The original estimates of Explorer VI lifetime were
roughly 200 years without accounting for luni-solar effects; when these pertur-
bations were included, the lifetime dropped to 2 years (!). This lifetime
estimate was spectacularly verified by decay before July 1961,

Analytical or semi-analytical work on high-inclination, high-eccentricity
resonance phenomena has been almost nonexistent. Classical celestial mechanics
essentlally ignores this problem since nearly all such orbit problems in the
solar system, excepting some asteroids and comets, are blessed with small in-
clination and eccentricity. Apparently some numerical-analytical work was done
by Liouville and Halphen. Musen(9)(10) and smith(1l) have recently revived the
methods of Halphen, with modifications by Georiachev of U.S.S.R., and applied
them via computer to the Earth satellite problem when the luni-solar influences
are (relatively) large. In his initial studies, Musen found that the eccentric-
ity oscillated rather strongly in a large interval, going from large values to
zero and increasing again with accompanying inclination changes of as much as
20° (cf., Figs. 2-7). Such pulsating behavior of the eccentricity was also noted
by Kozai(lz) in his studies of high inclination and eccentricity asteroids per-
turbed by Jupiter.

Let us return now to the lunar orbiter problem and the question of station-
ary solutions, or resonance points. From (10) one can readily see that 7 is
always zero for cos g = 0 or g = +90°, for all values of 12 and B. (To
help in relating statements about nz, B to orbit geometry, one can think of
M as "eccentricity" and P as "inclination.,") For a resonance condition we

must have g = 0 subject to sin g = *1; this condition can be written as

1/2 5J
4
2 [(1 - %) - B)] Jzazne(n2 - 56) + 2xn? - 25
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J
4 4 3
+5 8—02+x(f3-n) + Jaan"Cy = 0 (15)
where
c, = 28+ (148 + 70 - (6382 + 1268)n7 - 23187
c, = 508 - (s68 + 7)nt + (6382 + 728)n% - 7782 (16)
€y = 4q6 - (358 + 5)n5 + (35:32 + 41B)n2 - 40&1«2
2,74
nE n
X =
M

Note that as e -~ O, nz - 1 and tL. Sehavior of the zeros of (15) is dominated
more and more by the Jg term. Conclusions concerning the behavior at e = 0
cannot be drawn from (10) since the variable g becomes undefined at e = 0;
characteristics of the zero and near-zero e behavior will be examined later.

The next possibility is that cos g # 0 and hence ﬁ = 0 implies:

2
-23,an°(n” - 5B)

sin g = A iz ; (17)
s[a-aBe2 -] 5,67 - )+ w
for e# 0 and i #0, (nz = B). Substituting (17) is é = 0, we find the
resonance condition

2 5J

25 [5,0% - ) v ax] (- M07 - 8) 1,a%0%07 - 58) +2m? - 2 ¢
J3
s (2 262 2,62 2fla,
4T1-7B)+4x]ann-56)03+ann-56) 5 S5
4
+4x(B-n)| =0 (18)

In relations (15) and (18) we have the parameters a and P and ask for
the positive roots 12 <1 (if any). The implication of (15) and (18) is that
we no longer have the critical inclination problem in the usual sense, for now
the resonance or stationary solution depends on eccentricity as well as on in-
clination for a given semi-major axis. In addition, the argument of pericenter
igs fixed at g = +#90° or as determined from (17). 1In the usual critical in-
clination problem, as in the case of near-earth satellites, all perturbations
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except J, are second order and hence the stationary solution, to first order,
depended only on inclination,

Siuce ihe resonance conditions are high-order polynomials in nz, they
must be solved numerically. Prior to discussing the numerical results, however,
let us first examine some special cases of the resonance conditions: a) when
the eccentricity is close to zero and b) when the semi-major axis is large.

As the semi-major axis grows, the Earth influence increases, until at some point
the Jn effects may be considered "second order" and hence dropped from the
equations. In doing so, the (long-period) equations of motion reduce to

n= g (-8 - en ?na® sin 2g (19)
22
R 3n_a
g == [6 - 0" - 56 - n")cos 2 | (20)
3Ln

Thus ﬁ goes to zero at g = 0°, 90° and at n2 =1, p. For n2 =1, pB
the eccentricity and inclination are (respectively) zero and we encounter loss
of definition of g. For g = 0” the only solution to g = 0 1is for 71 =0
which corresponds to a parabolic orbit of e =1, For the remaining possibili-
ties of g = #90° we fin g =0 for P =0,6n4, a result in agreement with
the findings of Kozai,(12) Lidov,(13) williams and Lorell.(14)

In order to determine the small (and zero) e behavior, introduce the
(non-singular) variables

A = e cos g
B = e sin g (21)

The governing differential equations for these variables are

A=-n§cosg-Bé

B—-Iglsing+Aé (22)

Substituting (10) and (11) for 7 and g, simplifying and retaining only terms
up to e4, we find

. 3 ) 1/2 ":“2 Ia
A=E—-4-(1-B) (1 -58)+8B (3-55)-—5(1-53)
2a q a

2
57 J.B
+ 45 (8 - 888 - 1198%) |+ —4—L——1—2- (5 - 418 + 408%)
16a 2a (1 - 8) /

224



LONG-PERIOD BEHAVIOUR OF CLOSE-LUNAR ORBITERS

5 (a2 4 B%)
3 2
+ 4——ﬂ5 (4 - 358 + 358 ) (23)
4a°(1 - B)
22
3 (J 2n_a 5J
g 4 E 4 2
B=—S1(2(1-58)+ - (4 - 568 - 1478°)
4L 53 uQ 163.5
J_B
L (5 - 418+ 408)) A (24)

2a4(1 - ﬂ)l/z

For e =0 the only possible stationary solutions are for B =1 and 8 = 0.2
corresponding to inclination of i = 0° and i = 63.4° respectively. Note

that for small e, say e < 0.1, and small B(g < 0.5) we can integrate (23)

and (24) by successive approximation with J3e2 considered to be "second order."
The integration technique parallels that of Breakwell and Hensley(8 except

that in the present case we no longer have the symmetry of coefficients and
variables,

In the general case, when the eccentricity may take any (allowable) value
we determine the stationary solutions from (15) and (18) via computer. This
was done for the two sets of Jn values quoted in Section III and the results
shown in Figs. 9 and 10 for the Langley and U.S.S.R. values respectively. Two
major divisions exist in these figures; the solutions of (15) for g = #90°
and of (18) with g determined from (17), the former appearing in the upper
left, the latter in the left center of the figures, The loci of critical in-
clination and eccentricity for a (representative) range of semi-major axis
values are given, terminating at the maximum allowable value of the eccentricity
for the semi-major axis in question, For the g = +90° loci the +90° loci are
shown in dotted lines, the -90° loci as solid lines. As noted earlier, these
tend to the two zero eccentricity solutions of i =0° and i =63,4° as
e - 0, Identified by its equation, cos2 i = 0.6(1 - e2), is the Earth-only
curve which is the limiting locus for high-a orbits; the locus for a = 5 is
indistinguishable for non-zero e from the limiting curve on the scale shown.
Superimposed on the loci for g # +90° in the upper left corner are contours
of constant g values., The upper left corner region ceases to exist for a >
2 since then the stationary solutions move "under the lunar surface,” i,e.,
they exist for eccentricities greater than the maximum allowable e.

An interesting feature can be observed in the evolution of the +90° 1loci
as the semi-major axis is decreased from, say 5. On the limiting curve the loci
for +90° coincide, As one decreases the semi-major axis the plus and minus
curves separate due to the increasing influence of the odd harmonic J3 (multi-
plier of J3 term is sin g). The critical inclination for a given eccentricity

is greater for g = +90° than for g = -90° if J3 > 0 and vice versa if
J3 <0 (cf. Figs. 9, 10), Furthermore, in the case of Jg > 0, the maximum
inclination attainable for g = -90° by decreasing a peaks out at about a =

1.4, then decreases as a — 1. On the other hand, for g = +90°, the maximum
inclination increases monotonically and goes to 63.4° as a — 1,

The situation is modified when the J3z and J4 coefficients change sign.

(From the present results it is difficult to estimate the influence of the
slight Jgp value decrease, but presumably the majority of the changes are due
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to the (significantly) different values of J3 and J4.) The +90° 1loci still
tend to separate with decreasing semi-major axis but now the curves tend to
draw together again as a decreases below roughly 1.7, say. This is due to
the proximity of the low-a curves to the inclination 63.4° for which the

J3 influence is minimum, The inclination for a stationary solution at a given
semi-major axis and eccentricity is larger for the coefficients given by the
Luna 10 flight than for the Langley coefficients for all values of a off the
limiting curve.

The last point to consider is the nature of the stationary solutions: Are
they stable or unstable? Stability in this context means bounded variations of
both n2 and g for motion near a stationary point; furthermore, the variation
of n2 must be such as not to exceed n%rit’ This question can be answered
from analysis of the Hamiltonian and its partial derivatives at a stationary
point. Since variation of g and 12 must be bounded near a maximum or a
minimum of the Hamiltonian, the stationary points corresponding to the minimum
and maximum are stable., The saddle points of the Hamiltonian will give the un-
stable stationary points., These conditions are easily checked on the computer
at the time of computation of the stationary solutions from the value of the
determinant

2% %"

% 383G
A = 2t o (25)
3GOg 362

From the canonical nature of the variables g,G, we have A as

a6 %6
3¢ 6
A= i (286)
G | g
%%
so that stable stationary solutions are characterized by
3G 36
A>0 27
20 and T >0 or Fo <O (27)
and unstable stationary solutions by
A<O (28)

All of the stationary solutions of Figs. 9 and 10 were found to be stable, cor-
responding to maxima of the Hamiltonian for g # +90° and minima for g = :90°,
The "saddle points" of the Hamiltonian, corresponding to stationary solutions
where equi-energy contours in the nz, g plane intersect, presumably exist

only for 72 < N2 .
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Conclusions

In view of the results of the preceding section some additional comments
on the 12 - g contours of Figs. 2-7 are in order. To aid in understanding the
evolution of the curves one can plot the locus of stationary n2 versus B
for a constant semi-major axis; this is done in Figs., 11 and 12 for a = 1.7
and a = 3.0 respectively for the Langley set of Jn's. The figures pertinent
to this dicussion then are 2, 3, 4 and 11, 12.

As B increases from zero, a stationary point develops at the appropriate
value of g (Fig. 9) and moves "downward" in the decreasing n2 direction,
disappearing under the lunar surface. Increasing f still further, we encounter
the g = +90° stationary point "rising" from below Nerit SOOn joined by the
g = -90° stationary solution., Further increase in P drives both +90° and
-90° stationary solutions toward 7 = 1, and purely circulating (and, for the
most part, surviving) orbits remain. For a > 2 we have no non 90° stationary
solutions but otherwise the evolution is similar,

For high-a orbits the influence of the Jn's is slight; hence the a = 3
picture for the U.S.S.R. Jn's is not presented, being only a slight variation
of Fig. 4. The primary difference for the a = 1.7 case with the U.S.S.R.
J,'s 1is the "evening" of the $90° stationary solutions on the nz axis,
implying that the critical inclinations are somewhat closer together for g =
+90° than in the case of the Langley J,'s.

In Figs. 11 and 12 for n2 very close to unity one seems to pick up an
additional stationary n2 solution at a given B value for Igf # 90° and
for g = +90°, The existence of such double solutions could not be verified
from the equi-energy contour program due to numerical resolution difficulties,
It seems that it would be more advantageous to investigate these regimes via
the low and zero e equations. Although the rapid falling-off in inclination
at low e (Figs. 9 and 10) was verified for the g = +90° stationary solutions
from the small-e equations in A and B, more work is needed in this area, As
pointed out earlier, probably more progress could be made for the restricted
eccentricity problem through approximate integrations of the A and B equa-
tions and thus the behavior very close to nz = 1 clarified.

Finally, it can be verified that the behavior for semi-major axis in the
range 1 < a < 2 1is similar to that presented for a = 1,7, with variations
only as to the location of stationary points with f and nz; for a > 2 the
results are similar to those presented for a = 3,0.

References

Brouwer, D.: "Solution of the Problem of Artitical Satellite Theory
Without Drag," Astronomical Journal, 64, 1959.

Kozai, Y.: '"Motion of a Lunar Orbiter," Journal of the Astronomical

Society of Japan, 15, 1963.

Garfinkel, B.: '"The Disturbing Function for an Artifical Satellite,”
Astronomical Journal, 70, 1965,

Vagners, J.: '"Some Resonant and Non-Resonant Perturbations of Earth
and Lunar Orbiters," Stanford University Department of Aeronautics
and Astronautics report SUDAAR 317, Stanford University, Stanford,
California.

227



. miimiin mmmrrrne
LONC-PIRICC BLHAVIOUR OF CLOSE-LUINAR ORDITLRS
Oesterwinter, C.: "The Motion of a Lunar Satellite," Ph.D. Dis-

sertation Presented to Yale University, 1965.

Giacaglia, G.E.O. et al.: "The Motion of a Satellite of the Moon,"
Goddard Space Flight Center Report X-547-65-218, Greenbelt, Maryland,
June 1965.

Akim, E.L.: 'Determination of the Gravitational Field of the Moon

by the Motion of the AMS LUNA-10," Translated from Doklady A.N. SSR.,
Mechanika Tom 170, no. 4 Izdatel'stoo "NAUKA," 1966, by A, L. Brichant,
NASA (NASA No. ST-CM-LPS-10532).

Breakwell, J.I. and D. ﬁensley: "An Investigation of High Eccentricity
Orbits about Mars,” in First Compilation of Papers on Trajectory
Analysis and Guidance Theory, NASA SP-141, 1967.

Musen, P.: '"On the Long Period Lunar and Solar Effects in the Motion
of an Artificial Satellite," Journal of Geophysical Research, 66, 1961.

Musen, P,: '"Discussion of Halphen's Method for Secular Perturbations
and its Application to the Determination of Long Range Effects in the
Motion of Celestial Bodies" Part 1, NASA Technical Report R-194, 1963,

Smith, A,J.: "A Discussion of Halphen's Method for Secular Perturbations
and its Application to the Determination of Long Range Effects in the
Motion of Celestial Bodies" Part 2. NASA Technical Report R-194, 1964,

Kozai, Y,: '"Secular Perturbations of Asteriods with High Inclination
and Eccentricity,'" Astronomical Journal, 67, 1962,

Lidov, M,L.: "Evolution of the Orbits of Artificial Satellites of
Planets as Affected by Gravitational Perturbations From External
Bodies" Russian Supplement, AIAA Journal vol., 1, August 1963.

Williams, R.R. and Lorell, J.: " The Theory of Long-Term Behavior

of Artificial Satellite Orbits due to Third-Body Perturbations" Jet
Propulsion Laboratories Technical Report 32-916 February 1966,

228




THE EFFECT OF THREE-D IMENS IONAL, NON-LINEAR RESONANCES
ON THE MOTION OF A PARTICLE NEAR THE EARTH-MOON
EQUILATERAL LIBRATION POINTS

By Hans B. Schechter
Department of Aeronautics and Astronautics
Stanford University
Stanford, California

NASA Research Grant NsG 133-61

229






ABSTRACT

In the uniformly rotating reference frame of the restricted 3-body
problem (in which Earth and Moon occupy fixed positions on the abscissax
the equilateral libration points L and L are known to be points of
equilibrium. A particle placed at rest at one of these points will
remain at rest for all times. According to linear theory, for very:
small disturbances from equilibrium the particle will tend to move
along bounded trajectories in the immediate vicinity of these points.

When the force field near L and L 1is not assumed to be linear,
and in addition other perturbing effects are included, the particle's
motion might be excited sufficiently and lead to unstable divergent
trajectories.

This report presents the results of an analytic study of the
3-dimensional stability of motion of a particle near L4 in a nonlinear
Earth-Moon force field, upon which is superimposed a linear solar grav-
itational field distribution. In particular, the long pericd features
of the particle's motion are studied, which stem from the excitation
at or close to the particle's natural frequencies, and are introduced
by the presence of resonance terms in the internal (EBarth and Moon) and
external (solar) force fields.

The results show that in the presence of the internal nonlinear-
ities the stability of motion predicted by the linear theory is valid
for only a very restricted region of initial displacement and velocity
disturbances. Disturbances outside this region would lead to divergence
of the solution. The nonlinear coupling of the out-of-plane terms with
the in-plane terms was found to be of minor importance and did not’con-
tribute to an appreciable transfer of energy from one mode of motion
to the other.

The inclusion of the external force terms was found to admit some

equilibrium solutions of the variational equations. Of those, the one
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stable equilibrium solution found was characterized by a coplanar el-
Uintie parricle orbit sround L, which had its or axic {of ma
roughly 120,000 mi) oriented at right angles to the line joining Earth
to L. This orbit was traversed in a clockwise sense at mean angular
rate equal to that of the Sun, as seen in the rotating coordinate frame,

and very close to the particle's faster coplanar natural frequency. The

particle's motion thereby became synchronized with that of the Sun.
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Jacobl constant introduced in Eq. (43)

mean Earth-Moon distance definmed by Eq. (8)
integration constant introduced in Eq. (65)
eccentricity of lunar orbit

functions of £ defined in Eqs. (69) and (70)
forcing functions introduced in Egs. (37)
Universal gravitational constant

generating functions introduced in Eq. (45)
Hamiltonian = H(o) +u’

contains the higher order nonlinearities
slowly varying Hamiltonians used in Eq. (48)
partial derivatives of H as defined in Eqs. (22)
Hamiltonian resulting from solar effects

contains the linear and quadratic terms

partial derivatives of H(o) as defined in Eqs. (41)

inclination of E-M plane with ecliptic
transformation matrix defined in Eq. (32)
Jl + J2 + .13 = generating function introduced in
Section IX.
Hamiltonian containing only secular and slowly
varying terms

* *
time independent Hamiltonian = K, + K,

*
coplanar part of K defined in Eq. (63)

Lagrangian
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LI>I OF SYMBOLS

m = ns/n = ,074801 = dimensionless Earth orbital

angular velocity

m = mass of ith body
n = mean angular velocity of E-M system
n, = mean angular velocity of Earth around Sun
Px,Py,Pz
= momenta defined by Eqs. (19)
Py sPyaP,
Q,P = normal canonical coordinates introduced via
Eq. (30)
R = displacement vector in imertial space
1] = distance between masses
T = position vector measured from LQ
;lL = position vector from Earth to point LA
T = kinetic energy
Ta = 2ﬂ/ub = period of slow oscillation in u: and a; obtained
from Eq. (84)
V = potential energy
W = normal out-of-plane solar acceleration at Moon's
position, introduced in Eqs. (121)
;,;,; = solutions to homogeneous linear equations
%,5,Z = forced response of linearized system
XgsYgaZg T solar coordinates in xyz system, defined in
Eq. (17)
a’,8’ = aet of "slowly varying integration constants”
a*,B* = set of variables canonical with respect to K*
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mH/(mE + mM) =~ 1/82.45
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perturbation quantities defined by Eqs. (15) and
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6 X 6 matrix defined by Eq. (24)

angular velocities of line of nodes, and of E-M
plane inclination, respectively

angular velocity vector of xyz system
eigenvalues of the linear homogeneous set of dif-
ferential equations (i.e., the natural frequencies
about Lé)

angular velocity of a hypothetical isolated E-M

system (i.e., no solar perturbations present)
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I. INTRODUCTION

The subject of the Earth-Moon libration points has aroused in re-
cent years the curiosity and interest of a great many researchers in
the field of celestial mechanics and analytical dynamics., This renewed
interest by modern day investigators in this classical problem has been
stimulated by the recent telescopic sightings by K. Kordylewski(l’z) of
two faint cloud-like objects or shapes in the vicinity of the L4 and I.5
Earth-Moon libration points. These findings have led to a great amount
of gspeculation regarding the origin and stability of motion of such
clouds, believed by many to be composed of mimute dust particles.

Although a number of more recent naked eye sightings from high
flying aircraft have since been reported by a few investigators in this
country, the issue of the existence or nomnexistence of these libration
dust clouds has not yet been resolved to everyone's satisfaction by
any of the current studies, and is still the subject of debate between
proponents and detractors of this hypothesis. While the definitive
answer to this question might not be obtained until concrete evidence
and data will be gathered near these points from a space vehicle, the
quest so far has not been all in vain. In the process a great many
areas for further research of both a theoretical and a practical, mis-
sion oriented, nature have been exposed and tackled, which will keep
many researchers busy for quite a while.

In the present dissertation we shall not attempt to shed new light
on the question of the existence of dust clouds, but shall confine in-
stead our attention to the study of the interesting underlying theoret-
ical problem in nomlinear amalytical dynamics of a particle. This par-
ticle may be associated, if one desires to do so, with the center of
mass of a hypothetical dust cloud. It should be pointed out however
that the uncritical application of some of the results and conclusions
of the present study to the dust cloud problem might lead to mislead-
ing conclusions, since such important destabilizing effects as solar
radiation pressure and particle collisions have not been considered

here,
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I1. LIBRATION POINT GEOMETRY

Some of rhe geometrical features of libration points zre bricfl
indicated below for the purpose of orientatien.

The five libration points (also known as Lagrangian points) of
the classical restricted 3-body problem (i.e., Sun is neglected, and
Earth and Moon revolve in circular orbits about their common center of
mass) are indicated in Fig. 1. They are points of equilibrium in the
coordinate frame XYZ, rotating around the Z axis with the mean angular
velocity n of the Earth-Moon system, in the sense that no net acceler-

ations are experienced by particles at rest at these points.

- X
T

Ls

Fig. 1: Libration points of the restricted 3-body problem.

By means of linear small perturbation analysis the collinear
points Ll’ LZ' L3 were feund to be unstable to small initial distur-
bances, while the equilateral points La and LS were found to be points
of stable equilibrium around which small amplitude conditiomally pe-
riodic (i.e., in this case deubly periodic but not necessarily simply
periodic) motions resulted for small initial disturbances.

The more realistic physical model used in the present anmalysis is

shown in Fig. 2. Thée Sun, lunar orbital eccentricity e (~. .055) and
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inclination i of the Earth-Moon plane with the ecliptic (i ~ 5°) are
included. The Earth is assumed to move in a circular orbit around the

Sum.

L} LUNAR ORBIT (SOLAR
EFFECTS INCLUDED)

LINE OF NODES
(REGRESSION A DUE TO SIN)

Fig. 2: Three dimensional geometry of the 4-body problem.
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111, BRIEF REVIEW OF PAST WORK ON THE SUBJECT

Most of the basic work on the restricted 3-body problem stems back
to some of the classical studies in analytical dynamics of Lagrange,
Jacobi, Poincard, etc. which are discussed in most of the standard text-
books on Celestial Mechanics. Some of the main features and results
are briefly summarized in the following sections.

More recent analytic work on the 3-body problem concerned itself
with such questions as the existence of periodic orbits both in the
vicinity of the libration points, as well as periodic orbits which fill
the whole Earth-Moon space and possibly loop a number of times around
both primary bodies.

Studies which included the solar force field are of a more recent
vintage and are predominantly of a numerical nature, in that they
tackle the problem by direct integration of the full set of differen-
tial equations of motion for various periods of time t, and usually
for a very restricted set of initial couditions(j_s) (i.e., zero par-
ticle displacements and velocities, and collinear positiomn of the major
bodies in the order Earth-Moon-Sun). The application of Hamiltomian
techniques to the 2-dimensionmal libration point problem was suggested

in an analytic study by Breakwell and Pringle.(G)

These techniques
are extended in the present thesis to the 3-dimensional problem which

also includes the effects of lunar orbital eccentricity.

1. THE CLASSICAL RESTRICTED 3-BODY PROBLEM: PAST RESULTS

AND THEIR LIMITATIONS

Some of the basic results of the 3-body theory, as related to the

libration points, and some of the questions left unanswered by the
theory arc mentioned in A and B, respectively.

A. 1. The existence of the five Lagrangian equilibrium points
shown in Fig. 1 was discovered.

2. The atability of motion near these points was investi-

gated by linearizing the equations of motion near these points.
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3. For small deviations from equilibrium the coplanar homogen-
eous set of equations (Egs. (25) with p= v = m = 0) in the xy plane,
which becomes uncoupled from the z equation, was showm to give rise
to a doubly periodic solution with the eigenvalues w = .955 and W
.298 (these frequencies were nondimensionalized with respect to the
mean Earth-Moon angular velocity n = .23 rad/day). The uncoupled, out
of plane, linear equation in the z direction possesses a simple har-
monic solution with eigenvalue u)3 = 1, (The reason for a period of 1
lunar month in the z motion is easy to explain physically if we con-
sider the limiting case of a vanishingly small lunar gravitational
force field. In that case the small particle at Ll, follows a near
circular planar 2-body orbit around the Earth at the lunar distance,
which crosses the Earth-Moon plane twice for each complete particle
revolution, thus leading to an orbital period of 1 lunar month, which
is also the same as the period of the projected simple harmonic oscil-
lator in the z direction.)

4. A first, and only, integral constant of the motion was found
to exist. This so-called Jacobi constant CJ corresponds to our scler-
onomic (i.e., time independent) Hamiltonian H, and consists of the com-
bination E - nhz = constant = - CJ = H, where E is the particle's total
energy (i.e., kinetic and potential) in a nonrotating baricenter cen-
tered coordinate frame, hz is its angular momentum in the Z directiom,
and n is the mean angular velocity of the Earth-Moon axis.

B. Some difficulties are encountered if one tries to extend the
stability conclusions obtained from linear analysis to predict the be-
havior of the complete nonlinear system. The main reasons are indi-
cated below,

1. The near commensurability of the eigenvalues w = 3u!2
leads to an internal near resonance with a detuning €= - 3u12 >
+954593-3-.297912 = = ,06086. This s poor convergence of the
usual perturbation solutions by means of which ome attempts to evalu-
ate the effects of higher order terms, by substituting back the homog-

eneous solutions into the nenlinear driving terms. Some of them give

rise to combination frequencies which are nearly resonant with the
natural frequencies of the linear equations, and thus lead to smll

divisors in the next approximationm.
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2. The Hamiltonian H is not definite near LA or L5 (positive
or negative). This sign indefiniteness has a bearing on the nature of

the stahilir

A\

of adisnant mationns
nt adjacent meoticns,

¥y INCGITATLC SCoLtw .

If we suitably recombine the terms in H of A(4) above we can come

up with an equivalent relation for the Hamiltonian H = % v2 + veff’

2 .2 .2
where v. = X" + ¥ + 22 and veff represents an effective potential
1 2
energy veff = -z (x2 + yz) - ullrl - u2/r2. The first term in H

thus corresponds to the kinetic energy, as measured in the rotating

frame, while the last two terms in Ve represent the usual gravita-

ff
tional potential energy V. 1In this new form H can be interpreted as
being in the nature of an emnergy integral of the motion. The nature

of the stability near L can thus be daduced frem the shape of the

surfaces Veff = constani'in that region. It turns out that near the
equilateral points the planar part of Veff has the shape of a "poten-
tial hill" rather than the "trough' which is required for stability.
This circumstance raises a question concerning the applicability
of the linear-theory stability analysis to the cemplete nonlinear sys-
tem, i.e., whether the nonlinear system weuld exhibit the same kind of
stability as predicted by the linear equations for given initial con-
ditions. One may remark at this point, on the basis of work to be pre-
sented later, that the answer is yes in a rather small neighborhood of
Lé'
ranges of initial conditioms.

The nonlinear system will however exhibit instability for ccrtain

It is also apprepriate to remark here that the stability of motion
exhibited by the linear system near LA and LS in the presence of a po-
tential energy "hill" is brought about by the presence of gyroscopic
terms in the linear equation (due to the Corioli's force 2(n x i} which
arise in the rotating frame). When further nonlinear and external ef-
fects are included, it is possible for additional energy to be trans-
ferred into the system with the result that initially small oscilla-
tiens may grew in the course of time.

It is interesting to mentidn that a Taylor series expansien of
v near L, shews the equipetential curves to be extremely elongated

eff 4
ellipses of finemess ratio reughly 1:10 oriented at right angles to
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the line from barycenter to L. The potential field thus falls off
quite slowly as we move in a direction perpendicular to the Earth - Ll.
lipe.

3. Another internal resonance occurs because of nonlinear
coupling of the z and xy solutions, and the near commensurability of
the eigenvalues w) = Wq, with the resulting detuning 613 = 0454,
This resonance leads again to poor convergence of perturbation type
solutions.

4, Although not actually a part of the classical 3-body
problem, it might perhaps not be inappropriate to mentiom at this
point also the presence of a third important resonmance of an external
nature caused by the Sun's perturbative action on a nominally circular
lunar orbit, which is an important factor in the subsequent analysis.
This indirect solar perturbation leads to a detuning ‘gl = 2[u)1 -1 -m]
= 2[.95459-,925207] =~ .05878.

5. The additional complications of resemances introduced by

the inclusion of lunar eccentricity terms will be taken up later,

2. NUMERICAL APPROACHES (SOLAR EFFECT INCLUDED)

Straightforward integration of the complete set of differential
equations, for zero initial conditions, gives rise to particle tra-
jectories, a typical xy projection of which looks roughly like the
one shown in Fig. 3 (taken from Ref, 4).

Figure 4 presents schematically another plot due to Feldt and
Shulman(s) of total particle displacement d with time t for an inte-
gration time period of 5000 days. Initial conditions were the same

as those in Fig. 3.
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110"(’«)
2700 OAYS aol

+

AV

Fig. 3: Typical particle trajectory in xy plane near Lz.
(t = 700 days)
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IV. SOME CONCLUSIONS REGARDING PRIOR STATUS OF THE PROBLEM

The following conclusions summarize some of the points which were
raised in Sections III(A) and III(B):

1. The past analytical efforts do not rerfolve in a satisfactory
manner the question of boundedness of motion near the equilateral 1li-
bration points of the Earth-Moon system, with or even without the in-
clusion of the perturbative effect of the Sun.

2. The numerical results available to date are rather limited
in that they were generated only for restricted sets of initial con-
ditions and initial Earth-Moon-Sun configurations. Consequently they
do not shed much further light on the question of the possible exis-
tence of domains of initial conditions and configurations which allow
small amplitude, bounded motions to take place for long time periods.

3. 1In view of the multiplicity of possible starting conditions
and configurations, it is quite clear that a purely numerical search
for such initial conditions would be both costly as well as of ques-
tionable success, and thus not very attractive.

4. The necessity and usefulness for further analytical ground-
work on this problem seems to be clearly indicated.

The above brief rundown will hopefully help to bring into better
perspective the difficulties as well as the motivations underlying

the present investigation.
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V. THE LAGRANGIAN L FOR A PARTICLE NEAR La

We shall desire the expression for the Lagrangian of a particle
near the L4 libration point, in the rotating xyz frame centered at LA’
and having its xy plane coincide with the fundamental Earth-Moon orbi-
tal plane. To this end it is convenient to start out with an inertial

reference frame Xps¥ys2 in which the positions of Earth, Moon, Sun

1
and particle P are designated by the numbers 1, 2, 3, and 4, respec-
tively, and by the position vectors ii (i = 1,%°++4), The kinetic

| energy TI and potential energy VI of all the masses are then

4 .
.1 o
=7 Z ™Ry Ry
i=1
| (1)
A Gm.m 4 Gm.m
v. - _ L Z — iy _ 1 ; ~ij
1 2 li - i | 2 rij
i,j=1 i j i,)=1
1#j i#3

| We switch first to an Earth centered rotating coordinate system xe’Ye’ze

b with the Xe axis pointing in the direction of the instantaneous position

‘ of the Moon (we neglect here the 3000 mi separation of barycenter from
the center of the Earth). For a particle of unit mass at point 4 we

then have

2

S N W A
‘ T_T(Rl+r14 (R1+ 1a>

Vet @
14 24 34
1= = R By o] B3 13 %
‘ L=3]lx, T +2R-r]+—+—-+——+ R R
2 L°14 14 1 14 T4 T2, Ty Z1 1
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where

The last term in L is independent of particle position and velocity
and can be dropped. This follows from our assumptien that the par-
ticle does not affect the motion of the primary bodies. It is also
convenient to remove from L the explicit presence of the Earth's in-

ertial velocity Rl' This can be done via Lagrange's equation

= [a—i—] Lo @
9Ts) ATy

and the Earth's equation of motion in inertial space

. u "

= B 3 -

Ry = 32 Y3, &
12 13

Since R_l # El (;14), one can replace Eq. (5) by the equivalent

relation

= _ 2 [/ - .z Wy .=
Ry = I I e et 3T e 6
14 |F12 13

After substituting Eq. (6) into (4) one can extract from it the

expression for L shown in Eq. (7):

@

248



THREE-DIMENSIONAL, NON-LINEAR RESONANCES

The last (solar) term in (7) can be further simplified if we re-
place it with the solar potential energy gradient evaluated at the
position of the Earth, as shown in Appendix A. This neglects terms
of magnitude (r14/r13)3 >1.5 x 10_8, which is quite satisfactory in

the present case, and leads to the expression

1= = By
L=3T ., + =

P2 USRS U

_ _ _\2

r » T

1 12 14 3 |3{*13 " "1a 1= -
“*‘2?2A sl sl Rl b1 vy B 2 PR 1A ®
r r 13

Expression (8) is still not in the desired final form of a Taylor
series expansion around 1'4' Before we carry out the expansion it is
convenient to nondimensiomalize everything, as indicated in the next

section.
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VI. NONDIMENSIONALIZATION AND EXPANSION AROUND L,

1. NONDIMENSIONALIZATLUN

The nondimensionalization is most conveniently carried out by

choosing the reference frequency n and length D defined by

Wy + o .
n = —D3— =< hy + (3 cos i > = mean angular veloc-
ity of E-M axis X = .23 rad/day 9
D=<x, >= mean E-M distance = 2.4 X 10° mi (10)

It should be pointed out that the only physical quantity which
can be measured with any degree of accuracy is n, so that the refer-
ence length D is actually a computed, rather than a natural quantity,
and is defined by Eq. (9). The averaging of T, in Eq. (10) must there-
fore be interpreted in the light of the more basic definition 9).

Wy denotes the mean angular velocity of an isolated Earth-Moon
system (no solar perturbations present), and () and i are indicated in
Fig. 2.

Two basic dimensionless quantities which will appear often in our

equations are

> 074801 (1)

and

P2 1 12)

250



THREE-DIMENSIONAL, NON-LINEAR RESONANCES

where

n, = angular velocity of the Earth around the Sun

From now on all lengths, velocities and times will be treated as di-
mensionless quantities, but we shall retain their old symbols

2, EXPANSION AROUND L[‘

Just as n was the basic quantity selected in the nondimensionali-
zation of the equations, we shall select m as the basic quantity, or
yardstick, which defines order of magnitude. We shall denote by o(m)
a quantity of first order of smallness, o(mz) of second order, etc...

The Lagrangian L of Eq. (8) can be written in terms of displace-
ments and velocities measured in the LA centered xyz frame by writing

the dimensionless vector relations

T STt T a3
1':_14 ?1L+?+$x?
where
-1: = xTx + yTy + sz
|;1L| =1+ p(t) = |;12| = instantaneous displace-

ment of libration point
L, from the Earth

Y S
Tt |r1L|(§- 1x+5§iy) +oxT)

and for the total angular velocity w of the xyz frame in inertial space

T

o=2T +5(t) =1 + () (14)
p(t) and v(t) are the perturbations of the E-M distance, and angular
velocity caused by solar and eccentricity effects, and are provided by

classical lunar theory.(7'8)
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p(t) = - .0079 cos 2€ - .00093 - e cos ¢ + % e (1 - cos 2¢)
15 — . —— e FAY A NAY
g <m <os (25 - W [$%)]

() = I:(') sin { sin T + i cos T]O] Tx

+[ﬁsinicosno-{sinno]fy
15
+ [.0202 cos 2¢ + 2e cos ¢+rem cos (2 - ¢)
5 -
+7e cos 2¢]1z
=\)T +1)T +1)T (16)

For additional details regarding the above expressions, and for an ex-
planation of the various angular variables used, the reader is referred
to Appendix B, The coordinates of the Sun in the xe,ye ,Ze frame, pre-
sented in Eqs., (17) are also developed in this appendix.

The Sun's position coordinates in the rotating frame are

xs = r13

b4 =-r1351n§

cos €

z =1, sinisin (Q- vh an

We now stipulate that the following quantities will be treated

as being of the first order of smallness:

m,e,x.y,z,l’x,l’y,l’z, »\/pztS) vvzts (18)

The momenta Px’Py’Pz conjugate to X,y,z are introduced through the

relations
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_ 1
=B +3 19)

The terms linear in e(= .055) in p(t) and u(t) are obviously only
of o(m), and will have to be treated in a different fashion if we are
to retain the definition of Eq. *18). This problem will arise when we
include the eccentricity in the canonical transformations to slow variables.
The use of a Taylor series to expand L and H around Ll‘ in terms
of x,y,z, Px’ ... etc ... raises the question of how many terms of the
series expansion have to be retained before we trumcate it, i.e., what
order of nonlinear terms must be retained so as to take into account

all the deminant perturbative effects. This question is readily an-

swered by noting that the highest internal resonance is that resulting
! from the near equality wy = 3(»2 which indicates that nonlinear terms
up to and including the fourth order must be retained in the Taylor
expansions of L and H.

When all the steps have been carried out and all the terms col-
| lected, as shown in Appendix C, ome obtains for the Hamiltonian H, de-

| fined as usual by means of

H=pt-L (20)
T
where
T‘[ = (1 x 3) ix of ta el t
P = Px,Py,pz = ( row matrix of momenta elements
and

X
r = [y] = (3 x 1) column matrix of position elements
Z
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2x s
(o)

+
N —
5
C
+
xc
S~
[}
S

- 3 2
+ 1_1-62'& (33xy2 - 7)(3 - 12xzz) - %F yz }3

3 22 33 22
5xy-9xy3+12xyzz)+%;_—8x4+1—6xz tigye

34 3 (2 2.2 e/ - 2%y
- Xy -y -§2}4+{-§p(x_5y + 4z 6/3 ( WXy,

- y " - y2,)
+ Uz(ny xPy) + uy(xPz sz> ux(ZPy yP,
2
2[ 3 ( ) 1 ( 2 2 2 0 5 6) e
-m xxX+yy -xlxT+y + 2 + 0(m” ,m ) etc.
[eru s 8 2 .

(21)

In the above expression we have split H! into a cubic part H3, a
quartic part Ha and a solar part Hs’ which in turn is composed of in-
direct solar effects (via p and v) and a direct solar effect (via the
m2 term) .

We shall concern ourselves in Section VII only with the motion

resulting from the bracket [ }(o) which represents the linear and
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quadratic part H(o) of H. These terms give rise to a system of forced
linear differential equations which will be discussed below.
The analysis of the effect of the terms in H’ on the motion of

the particle will be started in Section VIII.
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VII. THE LINEAR DIFFERENTIAL EQUATIONS AND THE TRANSFORMATION
TO NORMAL CANONICAL COORDINATES

Hamilton's equations can be written down in a very compact form
by using the matrix notation. We define the (3 X 1) column matrix
for r and Pr in a manner similar to those introduced for r and Pr
in connection with Eq. (20), and itzz;oduce the additional (1 X 3) row

matrix of partial derivatives of H

4@ _ e O ) au(°)]
e Tl Ty O w

22)
o [ an® ¢
B lTE I
r x y z
The equations of motion then can be written in the form
: H(;)
4
= 00 (6 x 1) column matrix (23)
P e
r T
Py
(o)
where HI(_%) and HpT are the transpose of Hfo) and Hlso) respectively,
r r
Qo is the (6 X 6) matrix
(LB ¢
3 - (24)
° T 0

I 1s the (3 x 3) identity matrix, and O is the (3 X 3) null matrix.

In component form, Eq. (23) becomes
*sﬂé:) =Px+y+{~i’-p+€(p+ Uz.)}

you) =ex e {G 3 (o))

{cont. on next page)
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Ne
"

H}g:) SRR Y O ux)}s

SN O I 1 _l_q 1
Px—-Hx —Py-zx+ (1 - 2p)y + (p+fuz)

213 2 ) 1
erZ xs+ 3xsys —%‘
13
s

- _ gl _ 5 33 1
Py = - Hy =-P +7y+ G (1 -2uWx+ {3 (p +5 “z)

+

+

n’ —;_ xsys+~/§yi)—"/—g
2r13

s

S (o) _ 1 ) 2] 3
Pz -Hz = -z + -z(ﬁuy+ux+m 2,2 (xszs+ﬁyszs

(25)

The terms in { }s contain the direct and indirect solar contributions.

The homogeneous part of Eq. (25) is obtained by setting p=p=m = o.
iwt

The characteristic equation resulting from a trial solution e is
(1-w2) [m"-w2+§7- 2]=o (26)
where
- 33 -
n= (1 - 2u) = 1.26753
The solutiomns to Eq. (26) are the eigenvalues
w =% .95459
w, = + .29791 @2n
wy = + 1.0 (corresponds to an

uncoupled z motien)
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The above w's are the natural frequencles which were used in the
discussion of the detunings in Section III.

Let the solutiuns ui ihe humogeneous ser of equaiions be denvied
by X,y,z++-and suitable particular integrals by %,¥,Z°*+ Thus the com-

plete solutions are

+ o+
w1

<l %l
“<

(28)

For later use the 6 constants of integration which appear in the
solutions (28) are best introduced by transforming first to a normal

canonical set of coordinates Q and momenta P

Q" - [Ql' % Q3] P’ - [Pl' Pys Ps] @9

which also satisfy Hamilton's equations of motion and represent un-
coupled motions in the form of independent simple harmonic oscillations
having as frequencies the three eigenvalues .

The linear equatiens of transformation can be written in the form

¢

y Q,

z Q,
P =3P (30)

b 1

P P,

P, Py

where J is a (6 X 6) matrix whose columns consist of the eigenvectors
corresponding to the eigenvalues t W and which are normalized so as
to satisfy Eq. (31) which is the necessary condition for a canonical

transformation.
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J& J =3 3D

The matrix presented in Eq. (32) satisfies this conditions and thus

provides the proper coordinate transformation.

0 0 0 HZ+D) -2deD) o
1 4 w, 2 4
1 2
- 2Ky ) o -z o, 1 0
1 2
0 0 0 () 0 1
J =
K
2 .1 2 .1 1 5
Koo} +7) Kozt g) 0 o Ty " 0
1
4
Y9 2 li.z_(9 2)
Koy 7 Kyw,1 0 “’_1(2‘- VR 0
0 0 -1 0 0 0
- (32)
where
-1/2
o2 2 45 B
Ki'{|2—°’1+2“ - 21 i=1,2
K, = .62016
K, = .72101
The numerical values of the elements in J are
0 0 0 2.05374 -5.66028
-1.24032 -1.44202 O -.823463 3.06768
3= 0 0 0 0 0 (33)

-.687459 -.0727629 0  .823463 -3,06768
.750378  .272262 O  .869732 -5.23066
0 0 -1 0 0

o © O =~ O O
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In terms of Q and P the Hamiltonian H(o) (for the case p = v = m = 0)
becomes

O % (Pi + wiQi) - }1' (Pi + “’;Qi) + % (Pg + ‘”§Q§) G4

The solutions for the three harmonic oscillators which make up

the expression for H(o) in Eq. (34) can be given in the form

Nor)
_ Ve
Q = o sin “’1%
o,
T
:\/ia
Q; = T3' sin "’3a§
3 (35)
Pl = m; cos wlﬁf

P2 = - Jio{z cos uxzﬁ?;
P, = 2a, cos w B;é
3 3 373
where8#=t+ﬂ B#-t-B Bf=t+B and a,,B, are the 6 re-
1 1° 72 2 73 3’ 1%
quired constants of integration.

Substitution of Eq. (35) and the J matrix (33) into Eq. (30) gives

the homogeneous solutions for the coordinates

%1

= 2,902 Jq cos mla’: + 8.003 Jo cos (nzB;

<1

= 2.103 Ja; cos (mla’: + 123.57°)
(36)
+ 4,793 Jo ( ? °
. @, cos u;zaz + 154.82 )

=.ﬂa—3coae§
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The particle trajectories in the xy plame corresponding to each
of the two coplanar normal modes are ellipses with major axes at right

angles to the vector ;11. and thickness ratios (minor axis/major axis)

1:2 for w and 1:5 for w, as shown in Fig. 5. Motion proceeds in a

clockwise direction.

PERIOD* 5 = 28.6 DAYS

PERIOD - 917 DAYS

5

SIS (THICKNESS RATIO)

Fig. 5: Trajectories of normal modes.

The complete unperturbed xy motion consists of a weighted super-
pesition of these two normal modes, and is in general not periodic.

The particular solutlens ¥,§, corresponding to the forcing func-
tions centained in the { ] brackets of Eq. (25) are most readily ob-

tained from the coplanar equations

3f~2§v-%x—ny=fx-f +fP
T )

. 9
y+2x-'T]x—zy—fy-kfx+fPy
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where f , f
x" ¥

functions of the subscript variables given in equations (25). For

» fpx, fp_ denote the direct and indirect solar forcing

our purposes it is sufficient to obtain the particular solutions to
2
o(m”). After introducing Eqs. (16) into (37) we obtain the solutions

(38)

where

% = .01016 26 - 67.2°
X cos (26 - 67.27) Resulting from the

§ = .00867 cos (2f + 38.30) indirect solar terms

X = .31 e cos (¢ - 72.20)

§ = .227 e cos (¢ + 50.2°)

& = 11.1 em cos (2€ - ¢ - 75.2%)

em
yem = 7.86 em cos (2 - ¢ + 51.76%)
%, = 1.27 e? cos (29 + 30.8%)
% , = 1.062 e cos (2¢ - 66.0%)
o 2 o
= 1.697 - .

X2 w cos (2€ - 127.7){  pogulting from the
¥ )= 1.43 m2 cos (2€ - 20.830) direct solar terms
m

L= 50 &

2 Constant displacement

Yc = ,2895 e

No particular solution for Z is retained since it is of o(m3) or
higher, and would lead to terms of o(ms) when substituted into H'. On
this point we shall have something more to say in Section X111,

The corresponding solutioms for Fr are readily obtained from the

relations
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Px =X -y

P =y + x

y y (39)
etc,

It is interesting to note that if we substitute Eq. (35) into

Eq. (34) we obtain the simple expression

H(o) = - + oy (40)

The particular manner of introducing the polar set of integration
constants ai’Bi into Eq. (35) follows from the canonical relationship
which they bear the Hamiltonian H(o). The quantities B;;, - S;, Bi and
s Qs g form, respectively, a canonical set of coordinates and con-

jugate momenta with respect to H(o) of Eq. (40).

Thus
1
ei I @ =+ 8P =0 or @, = const (41)
% 2
g§ =1 = H;O) °’2 =-u® -0 o g = const
3 3

The above results are in agreement with our stipulation that oy
and si be constants.

Furthermore, the quantities ai and Bi themselves form a canonical
set with respect to an unperturbed Hamiltonian H = 0.

The above canonical properties will be made use of when we analyze
the perturbative effect of H'.

The form of H(o) in Eq. (40) makes it very easy to verify the
point made earlier in B(2) of Section III, regarding the sign indeter-
minacy of H which is seen to depend, for small @y, Oon the difference
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oy - oy Although in the present case o, and «, individually are

constants, it turns out that for the casl a, i(?) the combination
otl(t) - o (t) remains a constant of the motEOn also when the pertur-
bative effects of higher order internal nomlinearities are included
(but external solar perturbations and lunar eccentricity are still
neglected). Thus oy and o, may grow individually as long as their
difference remains fixed, which indicates the possibility of an in-
ternally generated instability near Lz. also for the classical re-
stricted 3-body problem (for which we use the exact expression for H).
That H is a constant of the motion in the latter case (where

H # H(t)) as stated in A(4) of Section III, is readily verified since

M, , M

- I T
T 5% b P = using Eq. (23) t+

p=0 (42)

The only existing integral of the motion, the Jacobi constant CJ
(see pp- 281 of Ref. 9 where it is denoted by unsubscripted c), is
equal to the negative of H

H=-C (43)
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VIII. MODIFICATION OF THE LINEAR SOLUTION DUE TO u’

The inclusion of the terms in the Hamiltonian H', neglected until
now in the previous solution, can be handled by a method equivalent to
the customary variations of constants technique by requiring the orig-
inal constants of integration o and B introduced in Eq. (35) to become
functions of time, which then satisfy Hamilton's equations with Hamil-
tonian H'.

Inasmuch as we are not concerned in the present investigation with
an exact or detailed determination of the particle's trajectory, but
rather in the overall broad features of the motion, we shall desire to
obtain only the slowly varying components of o and 8 which will arise
from the secular terms in H', and those terms containing low combina-
tion frequencies which arise from the near resonances.

This can be accomplished by means of a suitable canonical trans-
formation of coordinates frem the polar canonical set «,B associated
with H = 0 to a new slowly varying canonical set cx',B' associated
with a new slewly varying Hamiltonian K’. K’ will contain only the
lowest frequency terms which arise in A’ as a result of the above
transformation, all other faster terms having been suitably eliminated.
The question as to which frequencies should be retained, and the cut-
off point beyond which the periodic terms are dropped cannot be readily
answered in general terms, but would depend on the particular problem
considered, and also on the density of spacing of the resonance peaks
in the lower end of the frequency spectrum. This point will be touched
upon again later in connection with the specific form of the expres-
sion for K’.

Returning once more to the coordinate transformatiom mentioned
earlier, it is reasonable to assume that for relatively small displace-
ments x,y,z of the particle, the effect of H! would be in the nature
of a perturbation of the limearized solutiom found earlier. With this
assumption in mind we may now consider a statiomary contact transfor-

mation

265



EE-DIMENSIONAL, NON-LINEAR RESONANCES

o, = o, +
i o 60(1
(44)
R’ = R 4+ @
i i s

that may be introduced with the aid of a generating function G(8,0’)

c(B,a’) = g’ + s(B,0”) (45)

(10)

which satisfies the relatioms
(46)

The first term Ba' in G gencrates the identity transformation,
while the function S(B,u') = S1 + 52 denotes an additional suitably
selected generating function which is introduced for the specific
purpose of eliminating all the short period terms which occur in H’:
S, is selected to eliminate the terms of o(m3) and S2 those of o(m[‘).

1
Since S does not depend explicitly on time t we can write

K'(8’,0’,t) = H(B',0’,t) + H'(B',0",t) [(3))

where H above is evaluated in terms of the new coordinates B' and new

’
momenta o .
When all the required steps of the transformation are carried out,

as indicated in Appendix D, ome arrives at the following relation for

KI

)= = = 1
K'=H,+H +H "[“3'51] (48)
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ﬁ3 and ﬁ& are the long period terms resulting from the Taylor

series expansions

=

1
~
2
-

Kt
o/!cl
»

+

-

% +E| ow 49)

evaluated at x,y,z.

[_HETdenotes the long period part of the Poisson bracket of
H3 with S Ha results from the substitution of the homogeneous so-
lutions x,y,z into HA’ and consists of an internal part H[‘ and an
external part HAext which contains both the direct and 1nd1rect solar
effects.

The algebraic work needed to express K’ in terms of a',e’ and t
is rather formidable, and is one of the major stumbling blocks in what
would otherwise be a relatively straightforward solution. A few repre-
sentative steps of the required manipulations are briefly demonstrated
in Appendix E. If all the manipulations have been successfully carried
out, one does eventually come up with an expression for K’ which has

the general form shown in Eq. (50).

K’ = Cl'1’[1’1 * bZCZAglﬂ ] *agby +agh, + °'1I3/2bSCA¢1+x
+ o [bge 8y, b7Ccy-A¢l+‘A4] t llzaz[bscmlﬂ ]
ta '1/2 '[b9 84+ P10%8, a0, +x] by + '2"12
+ a2'2b13 + az'l/zbmcc_”‘ + a'az'l/z(bls c_wlﬂg 1ecA¢2+x10]
+ "52"17 M "‘1'“3'["18 + bgCy %3*‘11] + aya3byg
+ uZII/ZQI;[b21CA¢2+)‘12 * bzchl3-o'*'A¢3+ oo

Mj
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b,(j = 1,°++22) are known constants and Cx stands for cos x.
The detuning frequencies retained in Eq. (50) have the following mag-

_1a 3
Hituucos.

206, *2(1 - m - w) = -.05878
3 2
- m

ZAGI +2(1 - A - wl) = ,08242
A, = @ - 3w a# -+ (1 - .0042 - 3w,) = ,10207
2 272 2
# # (50a)
ag= w181 - 3u)ZB2 - w - sz = .06086
A13 *w - 1 = -.04541
Ay + A¢3 -+ - 04541 - 0042 = -,04961

o - A¢1 <+ 06086 - .04121 = .01965
and

A13 - o+ A¢3 -+ -.1105

The terms containing A® arise from the lunar eccentricity.

As can be seen from Eqs. (50a) no terms with frequencies larger
than .12 have been retained in the expression for K’. Although this
choice of cut-off frequency appears at first sight rather arbitrary,
it can be argued here that for higher frequencies the resultant de-
tuning would not be narrow enough to introduce the very small divisors
which usually lead to divergent solutions, and that consequently their
omission should not materially affect the overall features of the re-
sultant particle motion.

The large number of frequencies which still are left in X’ pose
considerable difficulties in the way of a straightforward analytical
treatment. To enable one to carry out nonetheless a reasonably mean-
ingful analysis of the effects of internal resonances and of the solar
perturbation, it was found necessary to reduce the number of admissible
resonance peaks still further. This was accomplished by disregarding

for the present time from further consideration all the terms which
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arise from the lunar orbital eccentricity. While this step does tend
to restrict the present analysis to encompass only circular lunar or-

bits, it manages to reduce the number of detuning frequencies left

dowm to 3. For this ber of r s an analysis can be carried
out.

Eccentricity terms could perhaps be reintroduced at a later time,
possibly by means of an additional perturbation of the variational
equations which result from the present circular orbit analysis. A
possible shortcoming with such a scheme might be that it would prob-
ably lead to a set of parametrically excited linear differential equa-
tions which would not be readily solvable.

Another somewhat different approach might be attempted, if we re-
call that the elliptic 3-body problem (no solar perturbation present)
admits as a solution an elliptic particle orbit around LA. This el-
lipse is identical to the ellipse along which the moon appears to move
relative to an observer moving with comstant circular velocity along
the moon's mean circular reference orbit, but rotated 60° with respect
to it. Stated another way, the particle's motion is synchronized with
that of the moon, but takes place 600 ahead of it. Variational equa-
tions for these orbital elements due to the solar perturbation could
then be set up and hopefully solved.

The above are just two of the many other different approaches
which might have to be explored in greater detail before the more gen-
eral question of stability of motion could be satisfactorily resolved.

In the present dissertation however, we shall hereafter confine

our attention only to the case of zero lumar eccentricity.
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IX. THE LONG PERIOD HAMILTONIAN FOR e = o AND
THE ELIMINATION OF TIME t

For the case of e = o the expression for K’ shown in Eq. (50) is
reduced to the simpler form given in Eq. (51) below. The numerical
values of the coefficients b, and the phase shifts A, are determined
after one performs all the tedious algebraic manipulations similar to

those briefly demonstrated in Appendix E. There results

22
1

2

’..
K" = {.126ﬁm 2

- 6.00001'02' + 3.82%

1/2 4372
)

? . ’ s o
29.040(l cos [.060861: + ”151 + 3m282 + 14.2 ]

+

SN 4 .
o a3[.09316 + .08608 cos 24, - 03934 sin 2A13]

+

J7554e )0 - 002231 a’z} - {.005394a' + .008208x,
2%3 30, 1 2

+

026850 cos [.05878!: + 2w, 8! +29.4° + 2¢’ - 2<] + .00419301'}
1 151 e

(62

where

_ ! no_ ’
A13 = wl(t + Bl) - (t + 83) = -,04541t + w151 - 83

The first bracket contains all the internmal terms, while the sec-
ond bracket includes all the external (solar) terms. The long period
contributions to the coplanar (a{,a{) terms resulting from the periodic
parts of the indirect p(t) and v(t) terms in H’ were found to cancel
exactly the indirect periodic terms generated by the linear forced re-
sponse io and ?o of Eq. (38). The external terms displayed in Eq. (51),
which are left after the above cancellations, stem from the contribu-
tion of the indirect constant component -.00093 in p, from the direct
(m2) terms in H, and from the forced responses X ; and § 5 of the

m m

linear system.
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Equation (51) shows that the dependence of X’ on time t comes
about through the presence of three distinct slowly varying trigono-
metric terms with frequencies .06086, .09082 and ,05878, all of which
are of o(m). Since the same trigonometric functions also depend on
various combinations of the three angular variables Bii(i = 1,2,3),
the possibility suggests itself to eliminate the explicit presence of
t by means of a suitable redefinition of the Bi' so as to absorb the
time dependent terms. Such a transformation would result in a new
Hamiltonian K* which would not depend explicitly on t.

This absorption of the time terms is accomplished by means of a
coordinate transformation to a new canonical set of variables o* and
8* as indicated below.

We define B"l‘ via
* I o ’
251 = ,05878t + 2w151 + 29.47 - 2¢ + 2¢

or

B, = -02939t + w ) + 16.7° -+ €' (52)

*
The conjugate momentum oy

generating function Jl defined as

is obtained by the introduction of a

*
3 - o{l[.02939t + wg + 16.7° - € + e'] (53)
so that
I's
ar * x Q
oy = 1. o or ay = ;1— (54)
asl’ 1

* s
For the definition of 52 we use the trigonometric argument

.06086t + w B + 3uw,B; 4 14.2°
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7

and substitute for 81 from Eq. (52). This leads to the expression

B *
[ 0%16hr + 2wl + ¢ . of 50_1 P
i Sty v E o f Al I |

*
which suggests that 82 be taken as

* = ? ’ o
8, = .03146t + 3w,B, + € - € - .5 (55)
Use of a second generating function
3, = ap[ 03146t + 3u,8! + +- 50 (56)
2 =% t ‘“252 € - € - .
*
gives for the conjugate momentum @,
Q’
* 2
% 3 G

* *
The expressions for 53 and oy

with the aid of A13' Combining first the cosine and sine terms

can be obtained in a similar fashion

.08608 cos 2A13 - .03934 sin ZA13 = .09464 cos [2A13 + 24.56°]

we find that

*
By = -074801t + wB; - € + €' + 2.42° (58)

and after introducing a gemerating function J3 we obtain

(59)
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letting J = J, + J, + J, and noting that J = J(8',0*,t) we de-
*
termine the transformed time independent Hamiltonia K from the re-

lation
* * % t
K =|('(B ’d)+ié.€_g_l_) (60)
: r o2 * ko
Substitution for o ,B  in terms of o ,8 in Eq. (51) and use of

*
Eq. (60) results in the desired expressiom for K :

*2 1/2 3/20* N

- 2397
% Bl+52

*2 * *
= {.11540'1 - S.loje, + 3.05%,

* *
+ 090350! a3 2(5*1' B) + .08893ala + 67510 295

*2 *
- .002231<:«3 + .02939«

+ 031460, + .074801a% }
17 2 7. 3 i

nt

+ {.ooawaa* - 0073360, - a*[.oosu.s + .02563C *]}
3 2 " 28%
(61)

where the notation Cx = cos x has again been used for convenience,
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X. ANALYSIS OF THE INTERNAL COPLANAR MOTION

1. SLMPLLIFIUATIUN OF THE HAMILTONIAN

The analysis of the motion governed by the Hamiltonian K* of
Eq. (61) is made easier, and a greater amount of physical insight is
gained, if we treat at first separately the internal terms contained
in the first bracket. The modifications required by the presence of
the second, external, bracket are then taken up later,

Let us write for convenience

* * *
K =K. +K (62)
i e
where
*
l(i = all the internal terms
*
Ke = all the external terms

and confine our attention in this and the next section to the Hamil-
tonian K:.

It would help matters appreciably if we could eliminate also for
the time being the coupling which exists between the out-of-plane and
coplanar terms.

This elimination can be accomplished by a suitable choice of ini-
tial conditions which result in a; ; 0,*provided we have reason to be-
lieve that a physical motion in which oy does not depart much from its
initial small value can in fact exist.

The resultant coplanar type of motion can be maintained as long
as the nonlinear coupling with the out-of-plane terms does not lead
to an appreciable transfer of energy from one mode of motion to the
other.

In the next section, where we counsider the out-of-plane motion,
this situation will be shown to hold true.

On th: basis of the foregoing we shall neglect here all the :;
terms in K , which leaves us with the 2-dimensional Hamiltonian K12

given by
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* *2 * % *2 *1/2 *3/2
Ki2 = .1151«71 - 5.10102 + 3.0590r2 - 23.97cx1 @, CB;+B;=

*
+ 02939 + .031460'; (63)

*

Since t is not explicitly present in KiZ’ the latter can also be

treated as a constant of the motion.

* *
2. TINVARIANCE OF THE DIFFERENCE o -9y AND BOUNDED MOTIONS

* * *
The presence of Bl and Bz in Kiz occurs only through the combi-

* *
nation 81 + 82. From this one readily sees that

a(* *
12 Xyp
* *
aal BBZ
which implies that
RS
o = a, (64)

and after integration results in the additional coplanar integral of

the motion

*
@) - @, =D =% ID1| (65)

Unfortunately, this last integral does not provide any bounds on
* *
the magnitude of the coplanar displacements, inasmuch as oy and o

are not prohibited by Eq. (65) from growing individually as long is
their difference remains unchanged,.

On the other hand it is clear that the validity of the present
fourth order theery weuld cease to hold long before the a's have grown
to very large size, and that additienal higher order terms in H would

have to be included in the analysis. Equatiomns (64) and (65) are of
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* *
great use in those cases when o, and o, do not grow without limit.

1 2
Let us consider now the question of boundaries of ov*. From
T CELN sen hoasen
Eg, (&4} wc have
2 &)\
(-* i2 2 x %32
a. = |- = 23.97 a,0,0," S
2) * ¥, ok
aﬂz 1°172 BI+BZ

2 * %3 * *2 * *
23.97°aje,” - [Kiz - 11560 + 5.y,
*2 * *°
- 3.059," - .0293%, - .03110602J2 (66)

We now introduce the new variable

€= Al (67)

and Eq. (65) into Eq. (66), which can then be written in the form

2
(Eéﬁl) - 2® - 2© (68)

where
1/2
s[2@+ | for D >0
£ = (69)
1/2
* [53(5 - 1).1 for D <0
and
- (.2028 - -%%i—?—l‘)ﬁ - .0801 52 + constant D, > 0
m= (70)
(.2028 R %’,ﬁz); - 0801 € + constant D, <0
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The constants in Eq. (70) denote the value of N(o) and are re-
lated to the value of the Hamiltonian l(:z.

The points at which the 1) curve intersects the + or - branch of
the £ curve

n=4+%f (71)
ok K
correspond to points at which a, = 0 and, by Eq. (65), also oy = 0.

2

Reality of the particle motions requires that f2 27
The gradual changes of the motion of the physical particle in
the xy space can be described by observing the motion of a representa-
tive mathematical point alomg a given curve 7 in a plane in which f

and T are plotted as functions of §.
If the T curve intersects both branches of the f curve or inter-

*

*
sects the same branch at two different points, then &, and &, will

have finite values at intermediate points om 1, whichltend t<2>uard zero
as the representative point approaches the f curve, The sense of mo-
tion of the point is reversed every time one of the branches of f is
reached, so that the point continues to travel back and forth on a
given T curve between its points of intersection with f. The turning
or extremal values of the momenta o{* are thus fixed by the values whic
£ assumes at the points of intersection of T with # f.

The geometry in the f£(£) aund T(£) plane is shown schematically
in Pig. 6.

The curves ) in Figs. 6(a) and (b) represent bounded particle
trajectories in the xy plame. The tangency points PZ'P3 at which

%Enzn'=tf'

and (72)
c*_-*_o
b U T

* *
are equilibrium points in the (al ,az) plane, and with the aid of
Eq. (66) can be shown to correspond to coplanar periodic particle
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* *
orbits. Equation (66) requires that Bl + Bz = nff, which can also be
written in the form

w, B! + 30,87 + .06086t - nyw + 14.2° =

Reference to Eq. (51) shows that this condition eliminates the
detuning term due to coplanar coupling and indicates conmensurability
of the internally perturbed coplanar mormal frequencies u:l u)l uxlB1
and mz m2 mZBz The periodicity of the coplanar particle orbits
follows from here.

The equilibrium is stable at point P2 and unstable at point P3,
where small disturbances may cause a displacement to a meighboring curve
such as T, which causes divergence of the physical motion.

Transition from stability to instability occurs at points where
"=z £ (73)

When D1 > 0, £’ does not change sign as can be seen in Fig. 6(a),
and from this follows that all the periodic particle orbits for which

* *

@) > a, would be of the unstable kind. For the case D <O, £7 does
change sign at some value £ > 1 and we note accordingly the presence
of one stable and one unstable equilibrium point along the +f branch

in Fig. 6(b).

3. THE PERIODIC MOTIONS

When one solves the tangency Eq. (72) for the value of £ which
corresponds to every choice of Dl, one can obtain an al for every az
found. 1In the al versus az plane this solution curve represents the

2
designate periodic particle orbits. This curve is presented in Flg. 7,

where we have chosen as coordinates the quantities 10 [o{l and 10 30{

so called "tangency locus" of equilibrium values of al and cr which

*
(o, and 30 are in fact the associated "action variables'). Onm thls
1

*
curve we have 8set the angular variables 89
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* * * °
A12 = B1 + ﬁz = {or (714)

This plot is seen to comsist of two distinct branches which con-
nect at the point (1.12,0). The left hand branch consists of a seg-
ment of stable periodic orbits which is followed by a segment of un-
stable periodic orbits. On both segments AIZ =*0. The unstable branch
on the right hand side of (1.12,0) requires a A12 = n.

Two more curves passing through (1.12,0) and comnsisting of left
hand and right hand branches are also shown in this figure. The lower

(solid) curve denotes the loci of intersectiom points P, of Ny with the

second f branch. (For added clarification small 1nsertg of the appro-
priate geometrical situation described by Fig. 6 are also displayed
here in connection with specific segments of the curves.)

The dashed curve lying close to the 53 loc:s represents the inter-
sect:on of T, with the £ axis. On this curve A, = m/2. The values
of A12 which allow stable motions to exist in each one of the domains
I - IV which are separated by the above curves are indicated in the
figure, and also by shaded regions in the small inserts from Fig. (6).

The axis a; = 0 represents the locus of stable periodic particle
orbits which are traversed with a mean angular frequency differing but
slightly from w) . The stable periodic segments along which 10f;'2‘— >>
10,6—'1F marks those particle orbits which are traversed with a mean fre-
quency close to w,.

Curves of D1 = constant, intersecting all the above curves are

also displayed for a few selected values of Dl'

4, FREQUENCIES OF THE PERIODIC MOTIONS

In the present nonlinear treatment, except for the special periodic
motions mentioned above which are described omly by ome single normal
mode, all the other periodic particle orbits are generated by a super-
position of both normal modes. Periodicity here is achieved as the

result of an adjustment of the natural frequencies via the nonlipear
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coupling which occurs between the two modes and which makes them exactly
commensurable. The resultant frequency shifts Awl and Ay in the orig-
inal undisturbed frequencies Ol and w lead to normal modes with modi-

fied commensurable (3:1) frequencies ‘Ll, and u:z'

wl‘ =w + Ao o= JwZI = 3uy + M) 5)

This point was also raised earlier in the discussion following Eq. (72).

The orbital period T is determined by the slower mode

(76)

]
]
IR

During this time T three cycles of the faster mode are completed.

E. Evaluation of the Frequency Shifts for Periodicity

For every point on the 'periodic motion" curve of Fig. 7 there

* *
exists a unique set of equilibrium values g and X
The shifts Aw

1 and [:m2 can be estimated by writing
w1+ BE = 30, - 8yt an

and solving for mlBl' and wZBZ' from the relations

*
o 12

%

= .02939 + “’161'

g

r
L (78)

%
r-«%l(-
N

= = .03146 + 3wzéz'

w;
N
Nal*

* *
evaluated at g and Ayp- From here one finds

282



THREE-DIMENSIONAL, NON-LINZAR RESONANCES

L 20 _ * * *-1/2 *3/2
ALI = ‘“181 .ZSO&‘XIE - 5.1Q'ZE ¥ g a2E
79)
s - _ wal = * * *1/2 *1/2
sz = - ‘1‘262 = 1.70(1E - 2.039&2E + ¥ %

* *
where the upper sign corresponds to 5, = 0 and the lower to 8y = 1.

*
F. Variation of ¢ 's Near Equilibrium Points

For small disturbances from the equilibrium points P2 and P3 the
time dependence of £ can be approximated by means of a Taylor series

expansion of f and T, around the equilibrium points.

Letting
¢, 1 2
f= £+ (£ - EE + 51 (6 - £ E + .l
and .1 2 (80)
M= Tg+ (- &M+ g5 (€ - £ T + ...

and recalling that g = fE' 'm; = fé, we can combine Eqs. (68) and (80)
to obtain (after approximating 23.97 by 24 for convenience)

£ 1 d 2 2 v
251D, ~ %D, T & € - & =\/f -n= \/‘fE“fE A I
(83)

whence

o - ezz.lnll /|EE|(f£ -t (84)

E

For a stable point such as P, in Fig. 6(b), we have fé < TE

2
This makes the exponent in Eq. (84) imaginary of the form iu:at and
indicates a slow oscillatory variation in @. For an unstable periodic
point such as P, fg > T\E which leads to an exponential growth of o with

time.
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A few representative values of the period Ta = 2ﬂ/u:a are indi-

cated alongside the stable periodic segment in Fig. 7.

The developmenis of che present section can now be summarized by

means of the following general conclusions:

1.

On the assumption that the out of plame terms do not couple
strongly with the in-plane terms (which will be proven later)
it is possible to reduce the problem to an essentially 2-di-
mensional one.

Initial conditions which lie on an T curve located to the
left of the limiting curve of type T]3 will lead to bounded
motions of the particle in the xy plane.

Depending on whether the 1) curve is tangent to the f curve
at a point such as P, or P

3 2?
an unstable or a stable type, respectively, may exist.

periodic particle motions of

The periodic orbits generally result from a superposition
of the two normal modes of vibration in which the nonlinear
coupling has brought about commensurability of the basic
frequencies by means of appropriate frequency shifts., For
special initial conditions, periodic particle motions con-
sisting of only the faster normal mode may exist.

In the nelghb:rhood of stable equilibrium points of type PZ’
the momenta ay

tions in time. Near unstable equilibrium points of type P3,

*
and o, perform low frequency bounded oscilla-

*

the @ 's will tend to grow exponentially with time, which
results in a large growth of the particle's motion in the
physical xy plane.
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XI. ANALYSIS OF THE INTERNAL OUT OF PLANE MOTION

The analysis of the out of plane motion is rather simple and

straightforward compared to the coplanar analysis of Section X. We
* * *
shall investigale the coupling of g and oy in the regicn where @ = 0,

*
by neglecting the o, terms in Eq. (61).
The reason for this particular decision is the result of hind-

sight, based on a prior preliminary study of the external effects on the

coplanar motion which disclosed the presence of a stable equilibrium
point o(: #0, (x; = 0, for the Sun perturbed problem. This will be dis-
cussed in more detail in Section XII.

Let us denote by F* the internal terms left in the Hamiltonian
l(* of Eq. (61) when all u; terms are dropped. We have then

F o= 1154 + 090350 rC + .08893%
= .115 1 . 0ty o 2(8’{-8’;) . 1%3
(85)
*2 * *
- .002231@(3 + .07&801(13 + .029390{1
* * *
Let b4 = El - 83.
From Hamilton's equations we then obtain
| & = 2-.090350, 048
‘ 193724
‘ (86)
Gr = - 2-.090350, oS
s =~ 2, o *
3 173 2A13
This leads to the new integral of motion
c{* + o{* =D (87)

1 3 2

with D2 > 0.

ok *
As we did before for oy, we can now write for &12
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2
* * i~ * k
(dl) = 4-(.09035)2al2a*2 S ufF .1154«’1'2 - -08893¢«

3 3
(88)
*2 * *12
+ 20022310 ° - 02038 - 574501k
3 1 3l
We introduce the auxilliary variable 53
%
a
3
£, =5 (89)
3 D2
and end up again with the equation
: 2
£
3 2 2
(.1807D2 =E - 60
where this time
f=2 53(1 - 53) (91)
and
f'(0) =21 (92§
F 2 2
M=——7- L2770 - 53) - .984353(1 - 53) + .0246953
.09035[)2
.32534 50259
e i 3 (93)
D, D2 3
At the origin, the first and second T derivatives are
7o) = 1.5703 - ngﬂ 20 depending on D, (94)
2
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1"(0) = n‘(g3) = -.5366 < 0 (95)
W) <0 if D, < .3201 (96)
and
i) = -1 if D, < .1955 N

The magnitude of the slope 7' will determine the time history of
Aja. In particular, if 77 < - 1 then A’;3 will exhibit a circulatory
behavior, while a value of -1 <~ n’ < 0 would lead to a librational
behavior.

An upper bound on n' can be established by making a reasonable
estimate for an upper value of DZ' Such an estimate can be furnished
from some of the mathematical and physical considerations which underlie
the present analysis.

From a mathematical standpoint it is clear that in the binominal
expansions and truncations used to obtain the expression for the Ham-
iltonian H(x,y,z,t) of Eq. (21) it was assumed that x,y,z were small
compared to unity.

From a physical point of view it is not clear that relatively
large displacements away from the Moon would necessarily invalidate
the conclusions of the present analysis, but the large accelerations
resulting from large displacements towards the Moon or Earth could not
be tolerated.

1f we assume that the displacements should be limited to values
X,¥,2 < .5 (say) then for the excitation mode w we -2 obtain from
Egqs. (36)

*
c{1<-'i= .25

kS
i.e., oy < .0625
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and also

< .0625

»
Wt

so that for these limits

D2 < .1250 < ,1955

The slopes of all 7 curves are thus steeper than f'(§3) from

which follows that every 7 curve will intersect both + f branches,

*
giving rise to a circulatory motion in A13 as indicated in Fig. 8.

Fig, 8: Geometry in (f,§3) and (A:3,§3) space.
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Since |1'|>|£'| no equilibrium points with a # 0 can exist,
and consequently no periodic orbits in xyz space result from the non-
linear coupling of modes 1 and 3.

The actual slope of any 7 curve would depend of course on the
value chosen for DZ’ subject to the limits mentioned earlier.

We may choose for example a representative value of al = .006
(say) and assume a3 to be of the same magnxtude (this al is very close
to the actual coplanar equilibrium value of o{l in the externally per-

turbed case discussed in Section XII). Then we have

D, = 2a; = .012 (98)
This results in a slope
] .5026 _ -1
= 1,57 - oz - -40.3 = tan ¢
or (99)
g = 90°

In other words the 1 curve intersects the 53 axis nearly vertically,
from which one concludes that 53 : constant, thus, there is hardly any

energy interchange taking place between a and Q' » which shows that

the out of plane coupling is not very megrtant in this problem, and
that the motion is dominated by the coplanar coupling.

That the out of plane coupling does not introduce any instabili-
ties when 03 << and o(:
could also have been deduced directly from the expression for F ‘in

is close to its equilibrium value orx £ .006

Eq. (85). For ve:y small 013 it is sufficient to comsider only the

terms linear in oq, and to evaluate the coefflcxents at al = ,006.

The resultant Mathieu type Hamiltonian F indicates a parametrically
excited motion. Such Hamiltonians are discussed more fully in Appendix F,
(in connection with the solar effects on the coplanar motion examined in

* *
Section XII) but under the assumption that the values of o and a, are
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to remain very small (i.e., coplanar particle motions for very small
perturbations from rest at LA)'

If one applies the results of Appendix F to the present situation.
and notes that the coeffici £ o C X
; fficient o oy 2(8’1‘-85)
gy one readily concludes that the parametric resonance present in the

is smaller than that of

out of plane motion does not lead to instability.
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XII. ANALYSIS OF EXTERNAL EFFECTS

1. DETERMINATION OF EQUILIBRIUM POINTS

For a complete analysis of the motion in the presence of the ex-
ternal solar effects, one must retain the complete expression for K*
given in Eq. (61).

From the discussion of Section XI it was seen that the c:’;’aj*} in-
ternal coupling did not iead to any measurable transfer of energy from
the out-of-plane mode to the coplanar mode of motion, while from Sec-
tion X we have established the existence of an appreciable coplanar
coupling effect.

The major long term solar effect causes mainly an excitation of
the 0; mode, The a; mode does not experience any external excitation
to the order of magnitude of the terms retained. This latter state-
ment follows from the developments presented in Section XIII.

If a stable motion in the presence of the Sun is possible in which
a:,cx; and cy: remain small, it would suffice to retain only linear terms
in X* in order to determine long term effects. To linear terms we have
the simpler Hamiltonian

*

* %
.02425011 + .0241201; + .07899(1!3 - .025631:1/1Cz (100)

B
which is of the Mathieu type, as indicated in Appendix F, and leads to
parametric resonance in the q’{ motion.

Since ,02563 > .02425, the stability criteria of Appendix F indi-
cate that the motion falls into the unstable region of the Mathieu
plane, and that therefore to linear terms no motion can exist for which
or: remains very small.

From a physical point of view this means that the libration point
I.h is not stable with respect to small perturbations, when th: solar
force field is included, and that the higher order terms in KZ must be
retained in any analysis.

The lack of stability exhibited by the linearized Hamiltonian does
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*
not preclude the existence of equilibrium points in the o space for

*
the complete Hamiltonian. In view of the negligible effect of «

3on

the coplanar metion, it is of iuLclebL to look for equilibrium points
*
for oy = 0. Such points in the (al,az) plane are determlned by look-
o
ing for solutions to Hamilton's equations of the form 01 =a, = 0.

Once such points are located, it is then necessary to investigate
the type of equilibrium which exists there, and to identify the stable

ones,
This search is more easily carried out if one switches over to a

*_*
set of normal canonical coordinates (Q,P ) defined by
* f2ar 0 0 0
Q1 oy SB:

= (101)

* ¥
After setting oy = 0, the two dimensional part of K , which we

*
denote here by KZ’ becomes

= B G707 - (T ) ) e 2 e )
_ 23[:97 (:; R Q1°2)( *2 Q*Zcz) + 202425 (*2 )

02412 (%2 52) | 202563 (g2 2)
T B Y ) - By -y (102)

* %
The equilibrium points (Qe’Pe) are obtained from the solution of

the equations
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3 k3
Qe . KZP*T
L% ol 4 =0 (103)
P 2T
From Eq. (103) we have
* P 5.1 *( %2 )
KZP»,{ =0 = .1154P ( + Ql > -3 PI\PZ + Q2
2 *f * *
- 3 o7 (p 24 Q2 ) - .001379p, (104a)
K x=0-= p(p*2+ 2) 3.0 ( )
205 =07 - T Q") + 3.059, (" + @
23.97 ( %2 * *) *
- == 31’1?2 1Q2 - 27,Q,Q, ) + .02412p,
(104b)
* _ _ a4 f %2 *2) 5;1 *( %D )
KZQT =0 = .1154(21(1’1 +Q7)-==qlp Q2
+ 220 *(p + Q2) + .04988Q) (104c)
Fo = 1 k(%2 2) ( *2)
KZQ-; =0 = - (P + Q%) + 3.059Q,(B,° + q,
2397(*** **2 **2) *
- 2Q,P Py - QP,° - 3Q,0,7 ) + .024120,
(1044d)

Equations (104c) and (104d) are identically satisfied if we chose
* *
Qle = Q2e = 0. For convenience we shall therefore restrict our search

to those equilibrium points for which

* *
Qe = Q2e =0 (105
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*
For the above Q 's Eqs. (104a) and (104b) give

*

.1151.1)13 - 2. 55p*p 2 - s.81005° - .001379F) = © (106a)
*2 % %73 R 7 et

- 2.55P}7Fy + 3.0598,° - 17.43F[F,” + 024127, = O (106b)

One equilibrium point can be obtained by setting l’2 = 0 (which
automatically satisfies Eq. (106b) and then solving for I’1 from the

relation
*2
.1154?1 - .001379 = 0 (107)

or

* 1093

Pie = .
which corresponds to (108)

*

o5, = .005975

The above value of a: is the one which was used in earlier sec-
tions when representative numerical values were used.

The first equilibrium point, which we denote by EI’ is thus speci-
fied by the coordinates

E *~*_*_* *_0 *_00 5
Q=0 =Qy =P =Py oy = 00597
& *
P, = .1093 ay = 0 (109)
1 2
=0
03‘

Another equilibrium point can be found for which P* # 0, all other
homogeneous coordinates remaining the same as for point E,. The values
of P and P2
and (106b), after Pz is factored out from the latter. The coordinates

result from the solution of the algebraic equatioms (106a)

of the second equilibrium point EII were found to be
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E = = = =
SEE T T T
% *
Pl = ,1106 ap = .006116 (110)
I ¥ e osn v 107
PZ = -,003675 oy = 753 X 10

The two points EI and EI were the only ones readily found for

the present simplified conditions. A machine search of the complete
set of Eqs. (103) might reveal the existence of additional roots. The
periodic elliptic particle motion of mode close to wy corresponding

to conditions at EI has a semimajor axis of about 60,000 mi and a
semiminor axis of E;lf ilzxif 12;a1ue. These values were determined by
computing Toax x +y 1max where the wy modes of X and y of Eq. (36)
were used, and the maximum determined with respect to “‘131' It can

be shown that this requires that 8.422S + 4.4238 0
20y 8

2w Bf+247.140 T

and results in a value mlsif =~ 15.62°. The dimensionless expression
*

{1/2, and at oy = .006 amounts to

roughly 3.2 ,/.955:006 X 2.4 X 10° = 58,128 >~ 60,000 in round numbers.

In a similar manner one finds for the maximum dimensionless dis-

for r then becomes r = 3.2¢
max max

placement in mode ®, the semimajor axis rp,y = 9.1'/;2Tand in miles
Toax = 9+1 [lugay X 2.4 X 105 = 9.1/BITAZ ¥y, 2.4 X 105 miles.
It is of interest to observe that this result indicates the par-
ticles mean motion is synchronized with that of the Sun such that
their angular positions coincide closely whenever the particle crosses
one of the axes of the ellipse.
We recall that at equilibrium Q: = 0 and hence 8’1( = nf with

n=0,1"+-. Forn = 0, Eq. (53) gives

e’l‘ =0 = .02939t + wle{ +14.7 -€+ €’

and from here

w @ - e
“”151 = mlt - .02939t - 14.7 + € €
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When the particle crosses the major axis we had wlﬁi = 15,62,
and from the commensurability of angular velocitles at E,, (ay - .02939)

= 1 - m. Substitution above gives
15.62 + 14.7 =30.32° = (1 -m)t + € - €' =&

as defined by Eq. (B-9). Equation (17) then shows the Sun to be lo-
cated 30.32° below the x axis, and therefore closely aligned with the

major axis of the particle's orbit.

2. STABILITY OF THE EQUILIBRIUM POINTS

The stability of the slow variations around the above periodic
equilibrium motions in the xy plane can be determined by setting up
the expression for the variatxon 6K which results from caklng small
displacements 6Q and BP around the equilibrium values Q = 0 and
P:. Clearly, since EI and E are equilibrium points, the coefficients
of the linear terms in 6P must vanish, and on then obtains in three
dimensions

* *2 *2 *2 *2( *2 *2)
5K = .02885P1e[66P1 + 26Q1 + - -1 - 1.275[1’1e 6P2 + 6Q2

N AP* +* P* Y P*z( *Q *2) ]
1eF2e0F188y + By \BF  + 6Q J v

%2 *2 LY . *2( *2 *2)
+ .7648P2e[66P2 4 25Q2 + 1 - .00039[1’Ie 593 + 6Q3
x % Kk _k *2( %2 *2)]
* 4P| Py 8P Py + Py \BP) T+ 5Q

*2 %2 R 7] ( )
+ 04958 P126P," + Pyl6E,” + 2P) Py 267,68y + 60750 |

2113 *2( *2 *2) SR T N
v [PZe B¥y + 6Qy 2e 396 26
* * *
+ P*z(pv*z + 5Q;2)] - .0005578[? 2(66? 2, 25Q32)]

+ 0395[5? + 5032] - 5.810[ 7}, Py, (36252 + 0, 2
(con't on next page)

3
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* * % * * * k.3
+ pzi(aéplapz - 501502) + .01212({51’12 + &le]
*2
+ .012062[61’2 + 5Q22] .012815[61’ - 5Q) ] 11

Applying expression (111) to point E; results in

* *2 *2 *2 *2
6K = .0013805B}" + .025635Q° - .0031745P, - .0031745Q,
* *
+ .0400861’32 + .039496Q32 a12)

Since for every value of i = 1,2, 3 the coeff101en|:s of 6P have
the same sign as the coefficients of 6Q (1 €., 6K is exther positive
or negative definite irrespective of t:he signs of 5P or SQ ) we can
conclude that point EI is stable for small disturbances in all princi-
pal directions. The period of the slow variations in 61’1,6Q1 is approx-
imately 83 months.

It is more convenient to retain only coplanar terms in 51(* for
the determination of stability at EII' We then obtain the expression

* *2 *2 * & *2
8K = .00141161’1 + ‘025635"21 + .00183861’16?2 + .00365261’2

-5 * x *2
+ 7.847 X 10 5Q16Q2 - .0011505(22 (113)

If we now assume Pl and Q1 to remain unchanged while we intro-
duce variations 61’ and 6Q1 we have

* *
5K = .00141151112 + .025635Q12 (114)

where 5Q; = 51’;
Thus 61(* is positive definite for variations in the first set of
coordinates and hence 5Q1 and 6P remin bounded
Repeating the same steps for 61’2 and an while keeping 1’1 and

Q1 fixed gives

=0,
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5K = .0036525P22 - .oousoeqz2 (115)

where &P, = BQK = 0.
1 *1 * *
Since 8K 18 not definite for arbitrary choices of 6P2 and 6Q2

* 3
we conclude that point E_, 18 not stable in 5P2 and 5Q2, and hence is

an uns:able equilibrium izint. The equilibrium for variations 6P§
and 503 was found to be stable, which is in agreement with the find-
ings of the last section.

The above conclusion could have been reached also more rigorously
in a somewhat lengthier fashion by writing down the complete system
of first order linear differential equations for 56* and 5§* obtained
from 6K* of Eq. (113), and examining the roots of the appropriate char-

acteristic equation. We would find that

ok *
éQl 0 0 .002822 .001838 6Q1
o % *
6Q2 0 0 .001838 .007304 6Q2
ok [ = -5 *
6P1 -.05126 -7.85-10 0 0 5P1
ok -5 *
6P2 -7.8510 -.0023 0 0 6?2

(116)

A trial solution of the form esc would lead to the characteristic
equation

s + 1.282-107%s% - 2.031°10°% = 0 (117)

which has one positive root because of the negative constant term.
Equation (117) thus bears out the conclusions reached from Eq. (115).
A simple geemetrical description of the stable and unstable re-
gions in the 6 dimensional P*,Q* space 1s of course not feasible. Omn
the other hand it is possible to take advantage of the fact that the

stable point E. is noticed to lie very close to the unstable point E,;.

I
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It is thus of particular interest to determine the extent of the stable

* * *
region around E_, by expanding K up to cubic powers in §P and 5Q

I’
around E_.

1 * * %
The intersection of surfaces of constant K with the (P2 »Q,)
* 2

plane, for a value of P, = .11, is shown in Fig. (9). The dashed

1
curve shows the separatrix which passes through EII and separates the

stable from the unstable regions.
In the physical xy plane, a point in the stable region gives rise
to slow variations of the elements of the periodic particle orbit cor-

*

%
responding to E A point in the unstable region of the (P2,Q2) plane

1°
would lead to large particle departures from the equilibrium orbit,

and thus indicate a possible divergence.
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XIII. EVALUATION OF THE EFFECT OF THE RESONANCE CAUSED
BY THE FORCED SOLUTION Z

We had alluded on page 23 to the fact that no forced solutioms
in z, i.e., Z, had been retained since they are of o(m3) and would
thus give rise to terms of o(ms) or higher in H when one went on to
derive the long period contributions.

A closer second look at the external z terms in H(o) disclosed
the existence of a very closely tuned forcing term in the linearized
out of plane z motion which could introduce perhaps small divisors
in the solution for Z and thus depress the order of magnitude of that
solution. This would introduce another important long period term
into the Hamiltonian K. The resonance in question arises for example

from a term such as

Xz = -ria- il- sin i sin [1.0040212t + €]}

which would lead to a detuning of magnitude
1.0040212 - 1 = .0040212 (118)

This value would introduce a much slower term in K than any of
the terms previously retained, and might conceivably require a redefi-
nition of the angular variable B; introduced earlier.

The developments indicated briefly below disclosed that the z
resonance terms cancel each other exactly, and consequently do not
contribute a term slower than the one already considered. No further
modifications to the analysis of the out-of-plane motion of Section XI
were thus required. The steps leading to the above mentioned cancel-
lation were nevertheless found interesting enough to justify their
inclusion here.

The z portion of the external part of H(o) of Eq. (21) was

8 = iy (o ]+ o e 3y - B,
13 (119)
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For a coordinate system with its x axis pointing at the instan-

taneous position of the Moon, the angular velocity compoments v and

v ars oiven hv
- =5 e vES S

v i cos m+ O sin 1 sin n

(120)

<
1

ﬁ sin i cos 7 - 1 sin 7

These are the same as Eqs. (B-3) except that no has now been re-
placed by 7" = gnt + € - Q and g = 1,0040212.

The angular velocities A and i can be expressed in terms of 7,1
and the solar acceleration component W normal to the Earth-Moon plane
at the Moon's position, by means of the variational equations on page

404 of Ref. 9, in which a corresponds to (r12> here

. T, sinn
=12 w
2 .
na- sin i
(121)
r,, cos 7
12
i-= s W
na
By our nondimensionalization convention na2 = 1, so that
12
Dy =5 W[sin T cos T - cos M sin nw =0 (122)

and the angular velocity © has thus no component in the y direction.

One can also write for vy

r
v, = —lgf W{sinzn + coszn] = (1 + pW (123)
Dna
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A suitable expression for W can be obtained by differentiation
from the potential energy Vs near the Moon. If we let x,y,z denote

small displacements from the instantaneous position of the Moon, we have

B L I BT )Z_er
dz 22 13 14 2 14
13

X,y ,z=0

2

> ( )

= -2—?— Xs(1+p+x)+ysy+zsz
13

[}
I
-]

--;—((1+ p+x)2+y2+zz)
X,¥,2=0
2 *g” 5 2
= 3m 25 + o(m”) = 3m sin i cos £ sin (0 - v (124)
13

To sufficient accuracy then

v, =W= 3’ sin i cos £ sin ©-vh (125)

(o)
To check if H(z) would in fact lead to the presenze of small di-
o

visors in the solution for ¥ it suffices to check if H(z) contains
slowly varying terms of frequency .0040212 when we replace in it z

and P, by the homogenecus solutions z and i’-z.

(o) 3 2 #
H(z) = u sin 10 ./103 cos ﬁ3 sin (1.0040212t + €)

+ /3 cos (1.0040212¢ + c} + % v J/Ta; |cos e’; + /7 sin e?;]

(126)
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Since

v AALANTA. . 41
—- =i,uu4lclii - € iz

]

<

[
2l

we may retain in vy only the dominant resonance term

2

~ 3
v, =-Fm sin io sin (1.0040212t + €) (128)

When Eq. (128) is substituted into Hg:g of Eq. (126) and all the
terms combined it is found that all the long period terms cancel each
other exactly and only fast terms remain. PFrom this one can conclude
that the forcing function of the linearized z equation does not con-
tain a resonance term which is close enough to introduce small divisors
into the forced response Z and thereby lower its order of magnitude
from o(m3) to o(mz) or less.

Based on the foregoing we can conclude that the neglect of the
contribution of Z to the long period terms ?SE7S;;E was consistent
with our convention of neglecting terms of order higher than o(mA).

This analysis shows that although the Sun has an appreciable long
term effect on the changes in inclination of the lunar orbital plane,
it has the same effect also on the orbital plane of the librating
particle, with the net result that any relative long term out-of-plane
responses vanish., Short period, fast, relative terms do not cancel

out though.
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XIV. SUMMARY AND CONCLUSIONS

In the present dissertation, the 3-dimensional stability of the
motion of a particle near the equilateral libration points of the Earth-
Moon system, in the presence of the Sun, has been investigated.

Because the inclusion of lunar eccentricity would have introduced
into the problem a larger number of internal and external resonances
than could have been handled by the present method of approach, it was
found necessary to restrict the stability analysis to a lunar orbit
perturbed by the Sun but without eccentricity.

Four major conclusions emerge from the present study. First,
small coplanar motions near I‘l. or L5 will grow large because of para-
metric excitation by the Sun, as a result of nonlinear resonance. In
fact, the growth of the energy in the faster normal mode of the linear-
ized theory is found to be governed by & Mathieu equation.

Second, the out-of-plane motion is not seriously excited by the
Sun, and has a negligible effect on the coplanar motion, which is the
dominant factor as far as stability is concerned.

Third, a stable periodic coplanar orbit can exist in the presence
of the Sun. It consists of a clockwise motion along the 1:2 ellipse
corresponding to the first (or faster) normal mode, and has a semimajor
axis of approximately 60,000 mi. The external nonlinear excitation
causes the mean angular motion of the particle to become synchronized
with that of the Sun. Thus to an observer located at I‘A and looking
continuously in the direction of the Sun, the particle would appear to
move back and forth across his line of sight in the manner of a simple
harmonic oscillator. The times of crossing of the line of sight coin-
cide closely with the times at which the line of sight is aligned with
the major or minor axis of the ellipse,

Fourth, the presence of the internal resonant excitation, result-
ing from the near commensurability (3:1) of the two coplanar normal
models makes the stability somewhat delicate. As a consequence, the
semimajor axis of the second mode is limited to magnitudes less than
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approximately 2400 mi, For larger values the motion becomes unstable
and may result in very large displacements which would exceed the range

ui applicabiiiiy vi the present thneory.
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Appendix A

SOLAR GRAVITATIONAL GRADIENT CONTRIBUTION

Consider the term

r,, * T
L T -1
34 r
13
of Eq. (7), and decompose ;34 into
;34 = ?31 + ?14 = A (for simplicity) (A-2)

For (r14/r31) << 1 we can expand 1/r34 into a Taylor series around r,,

as shown:

1. 1 S S 1
E2VA T V- S S U i
[’34 : ’34]

[K-A _

T147°
(A-3)
3
1 /= - 1 14
*f(rm "’14)V2‘ ) *0(:73) o
[x iy
Ty
where
-2 T =-FT
v = a;— and Ty - r13
31

(a-4)

v 11/z=‘x' 377 ° A-‘1‘12
[x-x] [x-x] [x-xf
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and

= 1
SR ec] I -

where
I = unit diadic

Similarly

1 T .\
1= |3+ = i - 1 |3fF1s " a1 1 = -
T2 | E Tt 3 14 3|2 T -7 Tis " Tia
31 31 31
5. -5, \
= L3fas sy 1o o
‘33 7 T, 2 14 " Fi4 (A-6)

Combining (A-1), (A-3), (A-5) and (A-6) and neglecting the first
term of the series, 1/:13, which makes no contribution to the equations
of motion, we end up with the last term of Eq. (8) which is the expres-

sion of (A-6), and represents the solar gradient force near the Earth.
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Appendix B

THE EXPRESSIONS FOR p(t) AND v(t) FROM LUNAR THEORY

The expression for p(t) is readily obtained from Eq. (1), p. 281
of Ref. 7, after computing (n/'r:)-1 =1+ p(t) = r,, and retaining only
terms of o(mz) or lower. The term -.00093 of our Eq. (15) corresponds
to - %mz in the series for (a/r)_l. The semimajor axis a is set equal
to the reference length D in our notation.

Derivation of the expression for v(t) requires a few more alge-
braic manipulations. We shall make use for this of Fig. 2 (p. 13) and
Fig. 4 (p. 38) of Ref. 8, which are combined for convenience in Fig.
B-1, and also Fig, B-2 which shows the lumar orbital plane as viewed
from above (i.e., looking in the direction of the negative Z axis).

In order to facilitate the derivation we shall retain (in this Appendix
only) the notation and symbols of Ref. 8 irrespective of the use to
which some of the letters have been put in the main body of the present
report. Where necessary, the corresponding letters in our notation
will be pointed out.

In dimensional symbols we now have

G=(n+vz)fze+ifn+f}sini(fzXTN)

i,=cos N1 - sin 1L
Ty = cos 7T, - el TT,

(B-1)
Tz X ?N = sin nofx + cos 'noTy
e e
Ty = nt + ¢ -0
so that
w = (n+ Vz)Tze"'[i cos 'n°+§')sini sin %]Txe
(B-2)

+|:(')sin1cos'n°-isin T\)_]Ty
e

309



THREE-DIMENSIONAL, NON-LINEAR RESONANCES

The dimensionless form of w results if we set n = 1 in (B-2).
Noting that i, , iy N Tz are parallel respective to the unit vectors
e e

- — - e
Lx, Ly, Lz 0L our L" centered coorindate trame, we have

v=(.73inisinno+i.cosno
. . (8-3)
U=Qsincos‘no-isinno

both of which are of o(m3) or higher. The expression for v, car be
obtained by taking the time derivative of the true anomaly v in either
one of the expressions on p. 110 of Ref. 8 or Eq. (2), p. 28] of Ref. 7.
This results in the coefficient of Iz of our expression (16).

With the aid of Fig. (B-1) it is also relatively straightforward

to determine the components of r,, in the Tx’ 1 and Tz directions.

13
We refer the reader to pp. 38, 41, and 79 of Ref. 8 for a more de-

tailed presentation of the relations summarized here. For convenience

the following explanatory relations for the various angular arcs are

summarized below.

Ex or Ey = fixed reference line in ecliptic

Qmf(t) = v’ - Qwhere x Q= v Q = arc of nodal regression
m=x 2+ QA (measured in two planes) = YEA
€= Y EHo(o) i.e., at t = o
s = tan M'M

xM’ = ecliptic projection of xM

M aM

= tan 1 = sin 1

<
h

-
]

ﬂHo=nt+:-Q
yEm'(o)utt=oifes#o

N )
It

One can then show that

cos M’ = cos (v - v’) cos MM = (1 - % o2 +% st - ...) cos (v - v’

(B-4)
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LUNAR ORBIT
\ / //

m’' - N
Y M = Moon
M, > Mean Lonar Posimion
[ § | U xM'- Luwar LonerTuoe
U' = SoAR LonGITuDE
T ECLIPTIC A = Pomion or Periune
— - DesiNATES NooaL (RossinG
EQUINOX (USED BY US TO DESIGNATE
ANGLE ¥ TEN)
Fig. B-1: Lunar Motiom Geometry in 3-Dimension. IN = Unit VECTOR FrRom E10n

Fig. B-2: Planar view of lunar orbital plane
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and since

2 1 2
s=(1-e -§y>ysin1]°+evsin...+%e2ysin...+...

(8-5)

(from p. 41 of Ref., 8).
while

s° <y =sin” i = gin’ i = sin’ (5°8743") ~ .008 << 1 (B-6)

we can approximate to sufficient accuracy

cos Mu’ “cos (v - v)) =cos [nt + ¢ - n't - ¢’
+ e, e’ times periodic terms]

= cos [(1 - m)t + € - €' + higher order terms

(we have divided by n = 1) (B-7)
sin Mm’ = - sin [(1 - m)t + € - ¢’] + H.O.T. (B-8)
Define: E=4Mn' = (1 -mt+ ¢ - ¢’ (8-9)
and note that
sin m'T = sin i sin O m’ = sin i sin (v/ - @) (B-10)

With the above relations we can now obtain Eqa. (17) of the text

Xg = T4 cOS 4
= - -11
g T3 8in € (B-11)
- ! - = - ’
z = - T4 sin 1 sin (v Q) LR sin 1 sin (0 - v")
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Appendix C

TAYLOR SERIES EXPANSION AROUND Ly,

The steps needed in the expansion of the various terms in the La-
grangian L of Eq. (8) up to fourth order terms [i.e., o(ma)] are indi-

cated below. In dimensionless notation we have

- _ = - - _1 = 3 -
rll‘—ru'+r where rlL—f(1+p)1x+5§(l+p)1y

and thus

ria=[%(1+p)+XT+[§(1+D)+YT+ZZ=... algebra

=1+p(2+x+ﬁy)+(x+./5y+x2+y2+zz)
=1+(@+b)=1+1 (c-1)

where a and b refer to the two terms following 1.

This enables us to write r;: in the form

1/2=1 1 3.2 15.3_ 5 7 .4

_1— - — Y —
'14‘[1+1] -zI+3zI -zl t1g gl + ...

(c-2)
A similar expression applies also to rill‘ after replacing x by -x

in Eq. (C-1).

Evaluate now the various terms in (C-2).

o (ms)

[12]: <+ 2ab 4 b2

202 + x+.3y) (x+J§'y+x2+y2+z2)

2ab
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2. 2. 2 z 5
Gpix + Iy + x* + y +z)+29x+ﬁy) + o(m’)

20[20x + J3y) + 1 4 592 + 22° + 23 xy]

Terms independent of x, y, or z have been dropped since they don't con-

tribute to the final D.E.

b2

x2+ 2/3 xy + 3y2+ 2(x+ﬁy)(x2+ y2 + 22>

2
+ (xz + y2) + 2(x2 + yz) 22 + zl'

[13]: =/{+ }Zzb + 3ab% + b3

neglect as H.O.T.

3ab” 4+ 6p(x + V)2 + o)

o
+

(x+,,/—y) +3(x+,,/_y) (x +y2+ zz)+ o(ms)
[14]: only bl‘ contributes

(x + I + o@)

o
L}

Combining the above terms and neglecting noncontributing factors

gives

14 [P(x+f¥)+(x+fy+x +y2+zz)]

+ % {2p[2(x +.3y) + 3% + 5y + 222 + 2/3 xy]

[(x+ﬁy) +2(x+,,/—y)(x +y +zz) (x +y)2
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v 2+ y7) 2+ 2t} - 1B {entx + St + x4 )
+ 36+ a7 (492 + )} e B v S ©

FPurthermore

1 1 2
T T Arafarprx]-lasn?easgx
3 3
t, = (L+p) =1+3p+ ..,
Thus
T T
12 14 - -
_—3__=%(1+p) 1+(1+p) 2-ox-2px+norncontributing terms
T
12

(c-4)

The Lagragian L in Eq. (8) is made dimensionless by multiplying
it by D/(u.1 + 1,). Let us multiply Eq. (8) by this factor and then
set

byt =1
D

"
-

and introduce the dimensionless quantity

o S
1oty

while from before we had defined already the quantity

(c-5)

e
I

b=

by Eq. (12).
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It then follows that

-~
(]
()

N

Consider the contribution V of Earth and Moon to the potential

EM
energy term in L of Eq. (8)
m ¥, *T
L e ot T (€7
14 24 r

We recall that only the x coordinate changes sign when we use the ex-
pression for rii to obtain ri:. A convenient expression for vEM can
be obtained by making in t;: the following substitution for all odd

powers of x

L0 N B

When use is made of Eq. (C-6) and the lengthy algebraic manipula-
tions are carried out, one ends up with a VEH given by

_jr2 5 2.1 3%:
VEM = 18 * 'Ey tycz A - 20 xy
e} e gt 3
1-2y 2 1-2 2 3 2 1%43 2
+ ¢ .33 xy© - —_TZ_E ¢+ 12 xz” + é%; Xy - yz }3

37 4 123 22 3 22 33 22 3 4 4

3
i Y e Y w8

. 23;253 a - 2w Sy - 451 52z,,)ﬁ xy:x + 15(18- 2u) xyzz}

215 .2

+p{—%x +tF Y -g—z +%(1-2p,)xy‘s (c-8)
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The solar contribution Vs to the potential energy term in L is

found below.

t
»
P
+
-«
+
N

r13— s X sy slz

— — 1 ﬁ
Tig " Try [2-(1+p)xs+xsx1+[2(1+p)ys+ysy1+zsz

Now

- 213 - .z
Vo=-m |3 (‘13 ‘14) T (¢-9)

2
so that only terms of o(m”) or lower must be retained inside the bracket.
After dropping all terms which do not contain the particle's coordinates

we get

2

<;13 N ;14)2 ind (xsx + ¥y + z) + (xs +.3 ys)(xsx + ygY + zsz)

will lead to o(ms) terms (c-10)
and
2
ri4~x+ﬁy+x +y2+z2 (c-11)

Substitution of (C-10) and (C-11) into (C-9) results in

- 1_2[x x+y y) (2, + By Nxgx+ vy +22) ]

- % [(x +.3y) + (xz + y2 + 22)]‘ (c-12)
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The Hamiltonian H is defined by the relation
— = T.
H=p +Tr-L=p¥-L (C-13)
L

where

(C-14)

9l
"
1]
1
"t

I denotes the identity tensor. The equality P = —1_'14 is a consequence
of the linear dependence of ;l/» on the velocity components )‘c,&,i, in

the rotating coordinate frame. Writing T

14 as
?14—?1L+1?Tr+$x?
%u TRt
I = K+ yi o+ Hz
we get
; = ,.. algebra ...

14

It

1 - 3 : T
[.z_p _5£2<1+uz>(1+p)+x+ zvy—y(1+ l'z) i

+[‘£§B+%(l+p)(l + Uz>+§r+—x(1+vz)—zux}f

y

3 1 . -
+[§Cz(1+p) L\x—§(1+p) uy+z+yux-xuyA]1

z

(c-15)

We now introduce the momenta P via Eq. (19), solve for r from (C-14)

and obtain the expressions
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SRR TN TR O
Py+2—2p-'j-(1+p)+x 1+uz+zvx

~
#

1 1 3 i
z=Pz+[2(1+p)+x_}uy-[@(1+p)+yj'ux (C-16)
Also from Eq. (C-14) and Eq. (19) we can write L in the form

2 2
_1 J3 1 ( 1) 1.2
L—Z(Px- )+EP+2- +2pz-v -V (Cc-17)

I1f we now substitute (C-17) into (C-13), make use of (C-14) and
(C-16), and neglect all the terms which do not depend on the momenta
P or the particle's position T we end up after a lot of algebra with
the expression for the Hamiltonian H presented in Eq. (21) of the text,
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- Y

Appendix D

CANONICAL TRANSFORMATION TO SLOW VARIABLES

We shall outline here the steps which underlie the canonical trans-
formation from the variables o,B, to the slow set a',e'. These variables
are analogous to polar coordinates where .y corresponds to an amplitude
and B to a phase shift. We shall find it convenient to use also a car-
tesian set of generalized coordinates q,p in terms of which the trans-
formation relations will be developed.

Let

S =5(a,p") =5 +5, (0-1)

be a generating function from the set ¢,p to a second slowly varying

set q',p' where S, will be selected to remove from H the 3rd order

1

terms (all of which are short period) and S, to remove all 4th order

2
short period, and define

s = %S___ ?;, gi = (1 x 3) row matrix of partial
9 9 9, q3 derivatives of S

SqT = (3 x 1) column matrix of partial derivatives

Then
p=p"+5q(q,p"
d (v-2)
a=4q" -5 ,.(a,p"
P
Let
M=q-q'
(D-3)
sp=p-p
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and expand § T and § ,¢ 1o a Taylor series around the values of q',p'.
To second orget in Ag and Ap

> 1,7
Sqr(q.p') = =5 [S(q’,p') +S 1M+ 7 0 Sy Mt ]

2

0-4)

The expressions for q = q(q’,p”) and p = p(q’,p") can then be de-
veloped via (D-2) and (D-4)

’ ? ’ 3 2 1 T
4=9" -5 q(q,p) =q° - —— Is(q",p") + 8 _saq + 5 AqS 8+ e
pIT ’ 3 T ) q 3 q'Tq’
P
~q’' -5 4la’,p") -S(',pNMg + oo (-5)
P pTq’

In.order to prevent carrying unnecessary terms along let us esti-
mate the order of magnitude of the above terms., Since S will be used
to perform a transformation of variables in H/ which contains terms of
o(m3) and o(ma) then the lowest terms in S will be of o(m3). We might
also use the notation o(x3) since the x,y,z coordinates are the ones
to be transformed.

let us view q as equivalent to B and p as equivalent to a.

Then the derivatives result in the following orders of magnitude

S = o(Ha) = o(x3) = o(a3/2)

1/2, _
Sp 5, =o0@’") = olx) 0-6)
S =5, = o(a3/2) = o(x3)

S 40(5) = olx)
P q P

We assume also that
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M = o(x) + higher order terms (D-7)
T . ]
oy e qul o4
on it with B/Bp: it becomes o(x3).

Equation (D-5) can then be written as

We thus note that the torm

M=-5 -5, 00+ 0 - (0-8)
P P q

and terms of o(x3) are not carried along. Thus to o(xz) we can write

the following relation
[I + 5 ] M =-8
p'Tq' plT

which can be inverted to solve for Aq

-1

3
Aqa-—[1+s ] s = -8 + S S + o(x7)
pTq’ T T Tq! "p'T

(p-9)

where I is the identity matrix.
From Eq. (D-2) we also note that

8p = oS ) = o(x) + H.O.T.
q
Expanding for Ap as was done in (D-9) for Aq we find

5
Ap=S -8 s ..+ o(x°) (D-10)
T TqTq’ T

The partial derivatives of H can also be treated similarly to the
partials of S. Thus
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For a scleronomic generating

relation for Hamiltonians

K(qirp') =

o(H)

(D-11)

function S we have the transformation

H(q,p) (p-12)

and expanding H in a Taylor series around q',p' gives

K(q':P’)

B(q',p") + BeMa+Hytp+

2

1 3

+ 3T MT s APT _:T] B(q’,p") + -+
aq'T op

1
B(q',p") + Hq:Aq + HP:Ap + 5 [Aqtﬂq’rq' M

T, T,
+ M'H o+ R bq + bp'H R
qTp’ pTq’ p T’

+

N =

+
N
¥
"]
)
7]
7]
-
L]

+
[

Bq',p) +H s |- . +S S +HBels -8 S
’ q pT  TpTqpT ' PqT T TqTq e T .
.S 14545 H -8 _+8§ CR-
LA ¢ p'q'T]C q'rq'[ pT pTa'p

1
+5]-S +,+8 S H S -8 S
(2 A p'q"l]n q'rp'[ aT  TqTq" T

s, -5 8 H S-S o0 S |t
[q' p’ q'q'f] p’rp'[ aT TqTq T

(0-13)
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The subscript letters A,B,C,D have been introduced merely for
ease of subsequent identification of the respective brackets r.

we recall that

)
H=H" +H +H (D-14)

o(xz) o(x3) o(xz’)

4
where Hj3 contains x3 terms and H‘. denotes the 4th order terms like x',
m2x2,9x2 etc. This breakdowm into H3 and Hz. will be made use of in

choosing the relations defining Sl(q',p') and Sz(q',p').
We shall assume Sl to contain only 0(x3) terms and 52 only terms
of o(xA), because we shall select 32 80 as to remove all 4th order

short period terms from the Hamiltonian K.

—_— -s +s S, +5 s +s s
1 2 1 1 1 2 2 1
pT pT pTq" pT pTq’ pT pTq’ pT
o ofxh o(xh o(x) o(x)
(D-15)

Thus to o(xl‘), which is the highest order retained in all terms,

H,[]—vn(°)[-s -s +5 s ]+n -s

P/ : 1 2 1 1 3 4" %1

q p’T pT pTq’ pT q p’T
(D-16)

Similarly, the following expressions can be derived

[ ]5 - Sl + S2 - Sl S:l + H.0.T. (D-17)
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“'[15"“(3)‘}" +s, -S s ]+n s, +HO.T
1 2 1 1 3,71 I
P P qT q'T qTq’ T p’ qT

(0-18)
1 1 (o)
=T 1. H [}, +=s, ® S (p-19)
2 R S 1p, qTq’ lp"r
1 1 (o)
=[1.8 {31 +-5s, H ] (p-20)
IR L 3 L 2 1P, q"Tp’ 1q"r
1 1 (o)
= " [],+-5S H S (p-21)
70 pTq A z 1q, pTq’ 1‘,,,r
1 1 (o)
= H [ 1L +%8S, H S (D-22)
70D pTp! = B z 1q, p'Tp’ 1q"r

Substituting (D-16) and (D-18) through (D-22) into (D-13) results

in the expression

K-H(°)+H3+HA+B(?)[-51 -5, +S 8 ]
1 pT T Tp'Tq’ TpT

(0)[

-H, S +8'%Y]s +5 -5 s +H, S
3,01 I i1 2 1 1 3,71,
e’ T P q'T q'T qTq’ pT p’ q'T

P
1 (o) 1 (o) 1 (0)
+5S, H ] -%S, H S -58 H S
1 7% "1
2 1p, a'Tq’ 11,": z 1p, aTp’ ot o 2 Ta"
1 (o) R
+38 B 8 (0-23)

q'P P q".l'
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Recalling the definition of the Poisson bracket
r = - -24
(H,s] HquT upqu (D-24)

and applying it to the terms of Eq. (D-23) one can obtain after a
lengthy series of manipulations and combinations of terms the expres-

sion
k=ul® o Hy + H, - [H(O)’SJ - [“(0)’32] - [“3'51]

+% [u(°),sl s, rr] + %[[n(”,sltl, Sl] (0-25)

[
a p

in terms of q' and p' only.

Let us choose for the definition of S1 the relation
(o) ] -
[u S, -8y =0 (0-26)

and thereby remove H3 which contains only short period terms.
Then

O] 1 |40 1
k=u® p 4L [ﬂ S s rr] + 18] - [y05,]
1 r
. 1:}1(°),52] =ul® 4 H o+ 21- [u("),sl S5 "r]
'

- %[“3'51] - [H(O)'Sz] ®-27)

The third and fifth final terms in Eq. (D-27) can be combined

into the one bracket
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(o) 1
- [}{ S -5 5 rr] (p-28)
P

We now define S2 such as to remove all remaining 4th order short
period terms from K. Now both H, and {Ha,sl] will contain both long
period ( ) and short period (s-p) terms, which can all be eliminated

by letting S, be defined via

2
1[ _ (o) 1

)24 - 5 1 H,,S ] - qd 38, -5 S S =0 (D-29)

bgp 2 L1 [ 27200

This leaves the long period form of the Hamiltonian K as

k=1 4 0 -1 [33’31] (0-30)

and if o’ and 8’ are selected as the canonical variables, rather than

o and (t + 8%, the long period perturbation Hamiltonian K’ is obtained

as
R’ =H -l[u s] (p-31)
4 T 7 ("3

To this expression one must still add the contribution from the
linear forced solutions X,y due to H(o) as indicated in Eq. (49) which
then finally leads to the relation presented in Eq. (48).

Comparison of the K from Eq. (D-31) with the K presented on p. 63
of Ref. 6 shows that the two Hamiltonians are not alike. This differ-
ence can be traced to the particular way in which the time dependent
generating function Sl(q,p',t:) of Ref, 6 was defined there by means of
an equation in the mixed variables q,p', instead of first carryiang out
the transformation to the new set of coordinates q',p' shown in this
appendix in Eqs. (D-9) to (D-13).

As a consequence of the use of mixed variables, some of the terms

which would have appeared from the additional Taylor series expansion
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over q were thus missing and only one half of the terms of the Poisson
bracket [HJ’SI] of Eq. (D-31) showed up in the function ¢ introduced
in Rel. §. Tue absence of these additional terms prevented the cancel-
lation of nonpolynomial terms (i.e., terms which do not arise from

binomial expansions such as (x + y)", where n is some finite integer)
:3/201:1/2

and led to the presence of an extraneous term such as the oy 2

term in Eq. (10) of Ref. 6.

The source of the incorrect results, which can arise when one oper-
ates with mixed variables anytime terms higher than of first order are
retained in the Hamiltonian, were recognized by Prof. Breakwell, who
then suggested that the correct procedure in choosing the function S1
would be to transform first to the new set of coordinates q',p'. The
implementation of this suggestion led to the developments presented in
this appendix, and avoided here the presence of the inadmissible non-
polynomial terms.

The derivation of the Mathieu type Hamiltonian in Appendix F does
make use of mixed variables. However, the results obtained there are
correct since only linear terms were retained in H.

A last comment should be made regarding the slow variables ql,p',
or a',ﬁ'. It turns out that it is impossible to prevent the presence
of some higher order long period terms in 82 which arise because the
term slq,sl o may contain also long period parts, From this it fol-

lows that in the expression for, say, q

q=9q' -8 +S S -8 (D-32)

the last two terms may also make some long period contributions to q,
which would tend to contradict the assertion that q’ (and also p") are
the only long period variables. This situation is unfortunately un-

avoidable and camnot be circumvented by redefining S, or Sys since the

1
elimination of the extra long period terms in q' or p' via S would
automatically result in the introduction of unwanted higher order short

period terms into K that S would be incapable of suppressing simultaneously.
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Fortunately this impasse is not too serious since the bothersome
long period terms in Eq. (D-32) are of o(ml‘) or higher and may be
safely disregarded within the extent of the present theory inasmuch
as q’ does not appear in a linear manner in H. They would pose a prob-
lem however if the present approach were to be extended to encompass

some of the higher order terms currently neglected.
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Appendix E

SOME ILLUSTRATIVE STEPS IN THE DERIVATION OF
TONGC PERIOD TERMS TN ¥/

The steps leading from Eq. (48) to Eq. (50) required by far the
most time consuming, tedious and exacting manipulations and computa-
tions of the whole investigation. We shall indicate here only briefly
as an example a few representative intermediate steps so as to pro-
vide the reader with a feeling for what is involved here.

First a general remark concerning the Poisson bracket Tﬁ;:gzj.

In the expanded form, and using the polar canonical variables ¢ and

g, this becomes

[“3’51] = H3psS1qr - Hyy $Sygr (E-1
1 1 1 1

where the tensor notation for summation over i = 1,2,3 has been used.
The same bracket, when H3 and S1 are expressed in cartesian coordinates

x,y,z,Px,Py,Pz, can also be written as

[H3’51] = HySip T HyySip * ottt s Hyp Sy - cer - Hy 5
x y x 2

(E-2)

which indicates that the bracket will give rise only to polynomial
terms of the form xZP:, x3Py, ya, etc,

From this it follows that when one evaluates the long period terms
in the polar coordinates used in Eq. (E-1) one must be careful to ob-
serve that only polynomial type terms should be retained. Thus, one

can obtain secular terms like 5&{2, 7a§2 s+ etc, or slowly varying

terms like (+«.) a{as cos l'(u:1 - m3)t + «se]or (++°) a'l/za'B/zx

cos [(u)1 - 3ub)t + +-+7, but not terms such as (++-) 0{3/20'%/2 X

cos ['(w1 - 3uh)t + --+] because such a term could not arise from products
of the form XY, or ylxg which are the only kind that could give rise

to long period trigonometric terms with a frequency w - 3u?. The

quantities x ,y,, etc. represent the w, term in X and the w, term in

1
y of Eq. (36), respectively.
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This polynomial requirement is not satisfied in Eq. (10) of
Ref. (6) which contains the term 16.20(1'3/202'1/2
+ Juy By - 4.48°],

We shall indicate now a few steps in the evaluation of one of

T ~1
cos | .,0609t + w5

the long period terms in the Poisson bracket. For convenience we let

Hy = Hyp + Hyy €-3)

where

Hy, = coplanar (x,y) terms in H,

H33 = out-of-plane (z) terms in H

3
Similarly
Sp1= 812+ 55 E-4)
where
A
5, = - _[B3dt ®-5)
from Appendix D. (We recall that [H,5] = - 3S/5t when H is treated
as the momentum conjugate to the coordinate t.)
Then

[H3’sl] = [H32 + Hyg, Spp F S13] =

= [Haz'su] + [332’513] + [ﬂas’su] + [H33'513] (E-6)

Let us take the first bracket in Eq. (E-6), and consider for example
only the component Halslsl in it. It can be shown that it arises from
the product of the two parts
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C1/2 3 3
My, =o't {3 MG, +ay) + 3 N(33ay - 734)}‘\
1/2
+ {M(bl + by) + N(33b, - 7bA)}B

-1/2 21 1
+ o) {7“‘“1 +cy) + 3 N(33cy - 7c[’)}C (E-6)

and
_ 3/2 jou, ’ ’ 1}
512B =-a {H(a1 + 32) + N(33a3 - 704)}D

1/2 ’ [ [ I
0, {M(b1 + b)) + N(33B] - 7b[‘)}E

1

1/2 { ‘ ’ : ’
o) "o, M(c1 + c2) + N(33¢3 - 7c4)}F

where we have dropped for convenience the primes on the o's and B's.

The quantities a v, b1 LR bA’ vee ¢! cii ¢! are defined

1 4
T = T = ? 2,
in terms of x = Alc(l) + A2C(2)land y Alc(1)+61 + A2c(2)+62’ where
Q) = mlﬁf, ) = mzaf and Aj,A; +-- 6,8, are obtained from Eq. (36).

M and N are two constants defined as M = 3/3/16 and N = (1 - 2u)/16.

In terms of the above constants ome can obtain the following ex-

pressions
_ e _ 1,21 1 1
3y =87y A1“1(‘:(1)%1 Y3 %, 2 C<1)'51)

o o
by = A1“1’“z[2—"—_wl Ta, 20r@w, T T 5 c2(1)-(2)+61]

1,211 % Y1
tzhh [_——Zwl o, 200+ @4, T Ty - w, Cz(l)-(2>-az]

- (E-7)
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and similar expressions for all the other quantities inside the ()
brackets.

We observe from Eq. (E-6) that in the Poisson bracket, the coef-
ficient of o would arise from the product of brackets { }A with { }

1
and in the same manner we note that the

D’

coefficient of 19 - results from { ]A'[ }F; { ]B'{ }E; { }C{ ]D

" 01/203/2 -+ results from { }B-{ }F; { }C{ }E

2
o, » results from { )Co[ }F (E-8)

Products of brackets { } as indicated in Eq. (E-8) arise in all
the partial derivative products of H3 with S1
for every combination a:a'? to obtain the final value of the coefficient

, and must be summed up

for that particular combination of ao's.

. . 2 .
For example, to obtain the coefficient of @ in H320!151251 we
have

o/i: -1, { }D = - % {H(al +a,) + K(33a, - 7a4)}
. {H(a{ +ah) + N3] - 78} (€-9)

where the following relations among the a's apply here

= ’ = ?

a; = a; a; = a3
(E-10)

= ’ = 4

a, = a, a, =a,

Expanding and using the appropriate relations for the a's (not

shown here) gives
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2, 3 2 3 2
oy - {-2- Mz(a1 +a)" + IMN(a; +a,) (332, - 7a,) + 7}:2(33a3 - 7a,) }

(E-11)
3 2 3.2, 2 2
7 }{2(31 + az) =3 }iz(a1 + 2&132 + a2)
] T 1,2, 43 1,16
3 W 7 MM (7."' 7 czal) t MM (‘2‘+ C251) tigh
(E-12)

~ 1,3, 3f9 1 1, 405, 10 .

MN(a, + ay) (334, - Ta,) - ml}s T A% (§ e, * % c351) FEANT TS

3 2
i N2(3383 - 784)

(E-14)

——

1,6
+49{1—6A1 .5

When the numerical values for Al’Al"AZ’AZI’Csl’CZE’l’ etc. are sub.
stituted into Eqs. (E-12) through (E-14) and all the terms added, one
obtains the result

-92.87la§ (E-15)

This same, or a similar, procedure must be repeated for every
combination of a's which arises from all the terms of the Poisson
bracket.
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Appendix F

MATHIEU TYPE HAMILTONIANS
Consider the near-resonant Mathieu equation

X + wi[l + T cos Zuot 1+ r)}x =0 (F-1)

where T, €, << 1, The effect of the trigonometric coefficient is to
introduce a parametric excitation term into the simple harmonic oscil-

lator model.

It is easily seen that as € + 0 a resonant forcing term will arise

. . o ;
in case a perturbation solution is attempted, after the X( ) solution

to the equation

K+ ulx=0 F-2)

is substituted back into Eq. (F-1) to provide the next higher term.
The Hamiltonian of system (F-1) is

=
[

%— [pz + wzxz] = u® 4y
(F-3)
1/2

€
1

“’o[l + T cos Zmot(l + e)]

X,p = generalized coordinate and momentum, respectively

H(o) = Hamiltonian of simple harmonic oscillator of frequency e

H' = perturbation Hamiltonian (for T << 1)

The solution corresponding only to H(o) is
x@ —VZ“ sin w_ (€ + 8) (F-4)
o
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where o,8 are constants of integration.

When H' is included, ¢ and B become functions of time t. 1t is
naeful rn concider mai
these basically tell us the most about the "averaged'" long term behavior
of the system.

The canonical transformations of variables shown next serve the
purpose of suppressing all short period terms in H. We assume that «
and £ can be decomposed into short period and long period (or',B') com-

ponents, i.e.,

4
-
o o + as.p.

1
p+p + BB_P.

(o)

Introducing X'’ into the Hamiltonian H’

! = % u)iﬂxz cos 2w°t (1 + ¢€) (F-5)

and rearranging terms gives

' = ‘_;_'ﬂ {cos 2u:°t(1 + €) - %— cos [Zwot(l + €) + Zwo(c + B)]

- %cos 2u:°(€t - B)} (F-6)

The last term with angular velocity Zu)o( << Zwo is of low frequency
and thus gives a contribution to the long period part of H'.
Let this term be designated by fi’

B = - Z—Tl cos 2w°(€t - B8) (F-7)

Note that o still contains s.p. terms sc that H’' still is not the
final form of the desired long period Hamiltonian.
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To obtain the D.E. for o’ we introduce a generating function
S(oe',B,t) of the Hamilton-Jacobi equation which, to first order terms

can be written in the form

s =a'e + 78,(,5,0) (F-8)

in terms of the new momenta o’ and the old coordinates B. Thus

(F-9)

4 |H% 9.?|_9;

relate the old and new coordinates and momenta. a',B' form a canonical

set with respect to a long period Hamiltonian K', such that

-
ap’ (F-10)
27 _ K
B = o
where
TN % (F-11)

The Hamiltonian K’ of Eq. (F-11) is treated as a functiom of the
coordinates o(',B' and t, after the transformation relations (F-9) are
substituted into the right hand side of (F-11).

To linear terms only

' (a,8,t) = B'(@’ + T g8,0) = B'(e’,B,t) + H.O.T. (F-12)

and thus
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K > Hl (@f,5,0) + B'(@’,8,0) + T, + HOT. (F-13)
t

The function S1 is chosen in such a way as to eliminate all s.p.

terms from (F-13). We thus require

TS, + Hs'p(a',b,t) =0 (F-14)
t

from which results

4 1
= it i o .
5, = EG;??‘I‘EY sin 2ub(2t + €t + B) - ZG;Trf;—EY sin 2w t(1 + €)

(F-15)

Expanding 8 around ' in H' of Eq. (F-13) gives, again to first

order

1
K= B@',p',t) = - L0 cos 2u (et - BN (F-16)

A
with the aid of Eq. (F-7).
Equation (F-16) defines a long period, time dependent, Mathieu
type Hamiltonian,

Stability Analysis

The differential equations for o and g’ are summarized by the

matrix equation

ar 3/ag’

=8, X (F-17)

o' 33’

Rather than solve Eq. (F-17) directly for o! and g’ it is more

*  *
convenient to introduce a further gemerating functioms § (o ,B',t)
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s0 as to eliminate the explicit dependence on time and thereby trans-

*
form K’ to a new Hamiltonian K which is a constant of the motion, i.e.,
* *
K = K_ = constant.
° *

Let us define a variable § by the relation
8 =8 - €t (F-18)

*
and then take S to be given by

* *
S =a (8 - €t) (F-19)
Since
? *
Sx=p -€ =8
and
*
S ,=a'=cv

* *
the two variables ¢ and f are canonically related to the new Hamil-

*
tonian K which becomes

*

* *
+ S: -k’ - €o = - % cos 2w B - €o (F-20)

¥ : :
That K is an integral constant of the motion is evident from the

fact that
* * *
LS P S
dat 3 *
dt 28 t
* * * #
= by Hamilton's equation = i*- (_ i* + B_K; ii_K_; =0
3 3B B\
K* = K: = constant of the motion
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The stability or instability of systems governed by Hamiltonians
of the form (F-20) can readily be established based on a comparison
cf the magnitude of the covellicicuis i ¢ aud u* Ccus Zwoa in (F-20).

The relative magnitude required of these coefficients for insta-
bility or stability to exist can be determined as shown below, and the
conclusions then checked by referring to the known stability regioms
of the Mathieu plane.

*
From Eq. (F-20) we obtain the differential equations for «o

* w o ‘n
.k
A . =t 20 8" (F-21)
a8
and squaring,
2 *2 2 2
oo M
%2 o 4 * L€ *
o == 1 -[—*—— Ko + - a] (F-22)
a T o

after sin2 ZwOB* is replaced from Eq. (F-20) and the constancy of K*
is made use of.

The condition necessary for &* to vanish is obtained by setting
the right hand side of (F-22) equal to zero, i.e., at the intersection

of the two lines,

*
y=to
and (F-23)
4 % he
= 2K + —
M

This is shown in the next sketch, Fig. (F-1).
* * *
From this sketch we see that for o > . and &o > 0 the variation

o
* *
of ¢ 1is bounded by the lines y = + o 1if 4€/1 > 1, thus implying &
*
stable motion, while if 4€/T <1, o grows without limit.

Hence, 1if
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y sioee
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Fig. (F-1): Stability Conditions for Mathieu
Type Hamiltonians

se > 1 -+ stability exists

m (i.e., x = bounded)

a€ < 1 = instability exists

(lie,, x d@as t 4o
This leads to the conclusion that the motion is unstable if in the
* *
Hamiltonian K the coefficient of o 1is smaller than the coefficient
* *
of o cos ZwOB .

The above conclusion is also borne out by considering the Mathieu
Equation in the standard form,

2
d—;—+ (a - 2q cos 2z)v = 0 (F-24)
dz

Referring to Eq. (F-1) and introducing a new time variable t
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[

i
uot(l + €) + 5
and (F-25)
4
Ll,‘o(l + €) i

8

Equation (F-1) reduces to (F-24) if

a-= __1_7
(1+e€
and (F-26)
q=—21 - -1.
2(1 + ¢€)

The stability boundaries of the Mathieu plane (q,a) in the vicin-
ity of the region a = 1 are shown below (see for instance p. 114 of
Ref. 11).

SLoPE  2/M
1
N |
2 ce, -'a-l-tq--aqz+‘”1
PERIODIC SOLUTION
! | UNSTABLE REGION BOUNDARIES WHICH CAN
: BE APPROXIMATED BY

I e—se, =2 = -q- L q2 o STRAIGHT UNES NEAR

i ! e THE POINT (0,1
N V2 i 2 9

Fig. (F-2): Stability Boundaries in Mathieu Plane (q,a)
On se; the slope (da/dq)q_.0 + -1,

The slope of line N - N’ is, from Eq. (F-26), (da/dq)y 7 = 2/7,
and q = /2 for a = 1 (pt. 1).
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2

As the value of (a) changes from 1 to /(1 +e ) = 1- 2¢ + 362, point 1 trans-
lates along line N - N’ to either point 2 or 3, depending on whether the solution remains
unstable (pt. 2) or enters the stable region (pt. 3).

Comparing the values of q on se1 and N-N' for the same change Aa >~
we have

-2¢+ H.O. T,

On se

~ (4 - -
L qse_(da) Aa = (-1) (-2€) = 2¢
q=0

N/ ~,"_7 dj~ _‘n__
On N-N qN-2+<da)Aa— Ne

N-N 2

H.O.T.
Hence, if Gy > g, i.e., ifn/2 %> 2e, or 4€/m < 1, point 1 moves to point 2
and indicates as unstable solution,

This is in aggreement with the conclusion reached
earlier via the Hamiltonian approach.
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